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SUMMARY .
9\9/47

A combined theoretical and experimental investigation has been carried
out to determine the elastic behavior of various excised human and canine
arterial segments. The specimens were subjected to the combined loads of
internal pressure and axial tension, and measurements were made of the inner
diameter, outer diameter, and length for each loading condition. Arteries
tested included the human brachial, external iliac, superior mesenteric and
splenic, as well as the canine femoral and thoracic aorta.

The results indicate that, for all specimens tested, the arterial wall
behaves as a nonlinear, homogeneous, anisotropic, compressible material and
can be described by six elastic constants for each level of strain. Both the
circumferential and axial stiffness are found to increase with internal pres-
sure and both approach the value for the collagenous fibres at very high in-
ternal pressure and axial weight, respectively. The radial stiffness is found

to be essentially independent of either internal préssure or axial loading.

The relationship of this behavior to the presence and orientation of the
collagen fibres is discussed in detail.
The length of the arterial segment increases with pressure at low axial

stress, but decreases with pressure at high axial stress. At in-vivo levels
of internal pressure and axial stress, the artery length remains essentially
unchanged, independent of loading. Further, at in-vivo levels, the artery

behaves as though it were transversely isotropic, with equal stiffness in the

circumferential and axial directions. /¢Ljpuv)
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THEORETICAL AND EXPERIMENTAL STUDY OF THE ELASTIC BEHAVIOR OF
THE HUMAN BRACHIAL AND OTHER HUMAN AND CANINE ARTERIES

1. INTRODUCTION

Understanding the physical structure and physiological behavior of
blood vessels has long been the subject of serious study in the biological
sciences. It has become increasingly clear that mathematical analysis and
interpretation of such physiological phenomena as the pulse wave propaga-
tion, structural effects of aging and disease, and auscultatory blood
pressures are greatly handicapped by the lack of quantitative data on the
elastic behavior of arteries. Consequently, a number of investigators have
performed varied tests on living, excised, and simulated parts of the arte-
rial tree in order to deduce the elastic behavior or at least to understand
the role that the elastic properties of arteries play in these phenomena
(Refs. 1 through 24).

With regard to auscultatory blood pressures, the results of recent
experiments in a simulated arterial system (Ref. 24) clearly indicated
that auscultatory blood pressure readings exceed direct pressure readings
by an amount which depends largely upon the elastic behavior (in particu-~-
lar the buckling pressure) of the vessel in question. Ordinarily, the
vessel involved is the human brachial artery, for which elastic data appear
to be virtually nonexistent. Therefore, the present investigation was
initiated, primarily, to furnish such data. However, it became apparent
during this study that past analytical treatments of arterial specimens
have been inadequate because of the complex structure of arteries in gen-
eral. The present report therefore presents a general treatment of the
elastic behavior of arteries, with particular emphasis on the human brachial.

Most of the earlier mathematical analyses on elastic behavior of
arterial specimens have been based upon the assumptions that the material is
homogeneous, isotropic, and incompressible. It will be shown in this
report that these assumptions are not justified, and that such an approach
does not agree with the experimental evidence. A general nonlinear theory
for thin-walled anisotropic tubes will be presented which permits the
extraction of the six elastic constants for excised arterial specimens.

The results of experiments on various human and canine arteries will
also be presented along with the values of these constants as obtained with
the present theory.



2. THE ARTERIAL WALL

2.1 Structural Composition

The arterial wall is a very complex structure which surrounds the
lumen (flow passage) of an artery. This wall is composed of several dis-
tinct annular layers, which themselves are comprised of various biological
materials such as elastin, smooth muscle, collagen, and connective tissue
(see Refs. 25 through 27).

Generally speaking, the arterial wall is thought of as consisting of
five distinct laminas. These five layers are shown schematically in Fig-
ure 1 and are known, from the lumen outward, as the endothelium, internal
elastic lamella, media, external elastic lamella, and adventitia (Ref. 25).
The relative thickness of each lamina varies throughout the arterial tree
so that, for some arteries, one or two layers may comprise nearly all of
the wall thickness, while the remaining layers may be entirely missing.
Figures 2, 3, and 4 present microphotographs which show this variation for
three different arteries. The human brachial artery (Fig. 2) has a very
thick media which constitutes nearly 75 percent of the total wall thick-
ness. The canine femoral artery shown in Figure 3 has two equally thick
layers {(mediam and external elastic lamella) which comprise almost the
entire wall, but the thoracic aorta (Fig. 4) has as its thickest layer
the external elastic lamella, which makes up about 60 percent of the wall.
The internal elastic lamella is virtually nonexistent in this particular
artery.

The innermost lamina is the very soft endothelium which is a very
thin layer, probably one cell in thickness. It cannot be seen under X100
magnification because it is only 1000 Angstroms thick (Ref. 26). The
internal elastic lamella surrounds the endothelium, and it, too, comprises
very little of the wall thickness of the larger arteries (see Ref. 25).
This layer is primarily composed of elastin, with some connective tissue
interspersed (see Ref. 28).

The next two laminas, the media and external elastic lammela, respec-
tively, constitute the bulk of the arterial wall (see Refs. 25 through 29).
The specimens already discussed (Figs. 2, 3, and 4) displayed this charac-
teristic quite well.

The media is primarily composed of smooth muscle, but is striated
with elastin and some collagen. On the other hand, the external elastic
lamella, like the internal elastic lamella, has virtually no smooth muscle

whatsoever. It is made up of elastin and increasing amounts of collagen,



so that its outer edge becomes completely collagenous and blends into the
adventitia.

The adventitia, the outermost layer, has a high percentage of collagen
and is most unique. K. J. Franklin (Ref. 30) reports that this lamina is
made up of very stiff collagenous fibres, which form a double—crisscross,
waveless, spiral network around the inner layers, as shown schematically
in Figure 5. As indicated in the figure, their behavior is very comparable
to that of the well-known 'Chinese finger puzzle," in which an increasing
axial load causes a thinning of the wall and a rotation of the fibers to
a more nearly axial orientation. It is not known whether this structure
is typical of other layers where collagen is present.

In summary, the arterial wall consists of several laminas which are
composed of fairly elastic materials, elastin and smooth muscle, and the
stiffer collagen fibres which form helical rings around the inner layers.
The arterial wall is, therefore, clearly inhomogeneous, primarily in the
radial direction.

2.2 Elastic Behavior

The importance of the elastic characteristics of living blood vessels
has long been recognized by physiologists, and many attempts have been made
to determine those characteristics by both static and dynamic elastic tests.
For the larger arteries, the mathematical problem is that of an elastic
cylindrical tube which is subjected to an elevated internal pressure, a
longitudinal or axial force, and a periodic variation in internal pressure,
with certain external constraints applied to the tube. Physically, this
means that the artery, which has become stretched along its axis during
early growth and is constrained by surrounding tissues and muscles, is
subjected to an internal pressure pulse superimposed on a mean pressure
which is normally about 100 mm Hg. above atmospheric pressure. The question,
of course, is what are the corresponding deformations of the vessel wall,
and what are the associated elastic constants.

Perhaps the earliest systematic elastic tests of arterial specimens
were carried out by Roy (Ref. 1), who found that arteries exhibit the
properties of that class of materials now known as elastomers. In particu-
lar, they exhibit

(a) A large elastic range (i.e., large deformations with subsequent
return).

(b) A nonlinear stress-strain relation (stiffness varies with strain).

(c) A relaxation time (i.e., strain under constant stress varies with
time).



(d) Anomalous thermal behavior (material contracts when heated while
under tension).

Since Roy's investigations of aortic strips, many experiments have been
performed to determine the variation of elastic modulus with strain for
various intact vessels, both excised (Refs. 1 through 17) and in-vivo (Refs.
18 and 19). In general, all of these experiments show a nonlinear variation
of diameter with pressure for the intact vessel, and in 1957, Roach and
Burton published an ”explanation” of this behavior (Ref. 13), which they
attributed to the character of the various component materials discussed
above (see Section 2.1). By differential digestion of the collagen (by
formic acid) and the elastin (by crude trypsin), Roach and Burton were able
to test each component material and found values of Young's modulus for
elastin to be about 80 psi, as compared with the much stiffer collagen with
a value of about 1500 psi.

It is interesting to note that in no case was the material volume mea-
sured. It is generally assumed that the material is incompressible, which
is more or less true of rubber-like materials. Previous investigators have
also generally assumed that the material is homogeneous and isotropic, and
can therefore be characterized by a single value of Young's modulus for any
given loading. This seems to be a particularly bold assumption, in view of
the complex physical structure discussed above.

As a check on the assumption of isotropy, Lawton (Ref. 6, p. 160) tested
arterial strips cut longitudinally, circumferentially, and at various angles
to the tube axis. The results of these tests indicate that there is no sig-
nificant effect of orientation. Lawton therefore concluded that the arterial
wall is isotropic. However, since the collagenous fibres actually form a
helical net around the intact arterial wall, it seems apparent that cutting
this net would not only alter the elastic properties of the vessel but would
remove the very mechanism of anisotropyl and yield results which have the
appearance of isotropy. Hence, elastic tests of arterial strips cannot be
used to demonstrate the elastic behavior of intact specimens. As a matter

of fact, the work of Fenn (Ref. 15) strongly suggests that arteries are
anisotropic.

*An anisotropic material is one whose elastic constants are directionally
dependent; that is, it is one which possesses a different modulus of
elasticity, Poisson's ratio, and shear modulus along each of the three
orthogonal axes.



The question of homogeneity is a somewhat different matter. First, it
is clear from the microphotographs discussed in Section 2.1 that the arte-
rial wall is not really composed of a homogeneous material. On the other
hand, if we seek a mathematical model which will predict the elastic be-
havior of an artery when subjected to various loads, we may be able to
represent the cylindrical tube as made up of an equivalent homogeneous
material, provided that it exhibits a different elasticity in each of
three orthogonal directions, and we permit the elastic "constants" to vary
with the loading. The mathematical model need not necessarily remain at
constant volume, provided that we make sufficient measurements so that the
volume can be determined under each loading.

The purpose of the subsequent sections of this report will be, first,
to set up a mathematical model whose elastic constants may be expected to
describe the elastic behavior of an artery under arbitrary loading, and,
second, to set up and carry out experiments by which these constants can
be determined for a given specimen. 1In so doing, of course, we shall find
out whether the arterial wall can be described as nearly homogeneous, iso-
tropic, and/or incompressible.



3. THEORETICAL CONSIDERATIONS

The primary aim of the analysis to be presented here is to enable one
to determine the elastic constants of a given arterial specimen from mea-
sured values of the applied forces and pressures and the corresponding
deformations. Because the material in question is likely to be anisotropic
and exhibits nonlinear deformations, a mathematical analysis is not a
simple task. In fact, the arterial wall must be considered to be character-
ized by at least six elastic constants (corresponding to one value of Young's
modulus and one value of Poisson's ratio for each of the three coordinate
directions). Furthermore, these "constants' are expected to depend upon
the level of strain and are therefore not really constant at all. Conse-
quently, we shall characterize the material of the arterial wall as aniso-
tropic and consider large deformations, so that the elastic constants in
question will refer to the local behavior of the wall at a given strain
level.

The mathematical problem to be treated here is that of a thin-walled,
cylindrical tube of finite length which is subjected to the combined loads
of an elevated internal pressure and an applied axial force. The assumed
model and the appropriate cylindrical coordinate system are shown in Fig-
ure 6.

The thin wall assumption is used so that the stresses and strains can
be assumed to be uniform throughout the material. In other words, the
arterial wall is treated essentially as a membrane.

Large deformation theory is required to represent the static elastic
characteristics of arterial materials because these materials exhibit a
nonlinear stress-displacement relationship (see sketch below). This non-
linear curve means that the modulus of elasticity (local slope of the
stress-displacement curve) varies with the loading. Hence, we shall employ
large deformation theory to determine the nonlinear equation relating stress
and displacement and, from this equation, determine the local elastic con-
stants from the local slopes.



Nonlinear material

|
Stress, o v _J

Linear material

0

1.0 Nondimensional displacement, A

Large deformation théory is based upon the existence of a unique strain
energy potential, W, which represents the elastic energy (per unit volume)
stored in the material when it is brought from the unstrained configuration
to its strained condition. We note that the elastic potential is a posi-
tive quantity for all real strains and has a value of zero (W = 0) at the
unstrained condition. Various tests (Refs. 31, 33, or 34) show that, if
the loadings are performed isothermally, an elastic potential may exist
and, if so, is a single-valued function of the state of strain of the de-
formed body, as well as of the geometrical and elastic constants. Further,
if the material is inviscid and nonplastic and if the aforementioned elas-
tic potential exists, then the material is said to behave as an ideally
elastic continuum. The real material does exhibit some viscosity and plas-
ticity, but these are considered minimal for the low rates of loading
experienced during the present static tests.

Next, we shall assume that the material is elastically homogeneous.

Earlier in this report, it was pointed out that the arterial wall was defi-
nitely inhomogeneous. However, we now assume that the mean elastic behavior
of the wall can be represented by an equivalent homogeneous material.
Mathematically, this assumption demands that the elastic coefficients at
any given load are independent of location in the specimen (see Ref. 31,
p. 156 for more details), and the elastic potential has the same form
throughout the material.

In summary, the elastic tube representing the artery is assumed to
be

(1) A circular cylinder (axisymmetric)

(2) Thin-walled (quasi-membrane)



(3) Ideally elastic
(4) Initially unstressed and unstrained
(5) Deformed isothermally

(6) Elastically homogeneous {properties uniform throughout)

Since we are dealing with large deformations, it is convenient to
represent the deformation in terms of extension ratios (xl,kz,xs) which are

defined relative to the unstressed dimensions as follows:

)\l = ]'l/llo

A, =L/ (1)
]

Ay = 13/130

The subscripts 1, 2, and s refer to the coordinates selected, and the zero
subscript denotes the unstressed dimension.
The above ratios are directly related to the corresponding strains

(eii) for small displacements so that

1 11l
A, = 14, (2)
%3 = l + 638

The strain energy W is, in general, a function of all six components
of the strain tensor; that is, it is a function of the normal strains
(611’ €

, and 533) and the shear strains (€12’ € and e23)- However,

’
becauseng the membrane assumption, the normal stra;ss are assumed to be
uniform throughout the material. Hence, for the axisymmetric tube being
considered, a pure axial tension combined with a uniform pressure loading
cannot produce any shear strains. Therefore, the shear strains are zero
and the strain energy function W becomes a function of only the three

normal strain components or the three extension ratios xl, xz, and xs.

Lilal L=

W =W (x,),, and xs) (3)

It will be noted that the extension ratios depend upon the selection
of coordinates, as well as upon the loading, and that the W function de-
fined by Equation (3), therefore, does not uniquely characterize the strain



energy of the material in question. On the other hand, it can be shown
(Ref. 32) that there exist three strain invariants which are independent

of the coordinate system chosen. These invariants are expressible in

terms of the extension ratios of any particular coordinate system chosen.
For our case, since the tube wall thickness is assumed to be very small
compared with the tube diameter, we have a Cartesian coordinate system, and
one can express the three invariants as follows (Ref., 31):

_ .2 2 2

I, =N+ 20 + Ay
_ L2,2 2.2 2.2

I, = Mg+ AN, + A (4)
_ L2,2.2

I, = MDA,

The extension ratios can be defined in terms of the tube dimensions shown
in Figure 6. Thus we have

N
A= rm/rmo (circumferential)

A, = L/Lo (axial) (5)
xs = h/hO (radial) )

Hence, we can write the strain energy function W in its proper form
W =w(I,I,I) (6)

so that the stored energy is uniquely defined for any loading of the given
material in any coordinate system in terms of the strain invariants.

The invariant I3 has a simple physical interpretation which can be
seen by noting that the volume V of the thin tube is given by

V = 27 r hL (7)
Similarily, the initial volume Vo is
Vo = 2rr h L (8)

so that Equations (4), (5), (7), and (8) yield



-10-

r 2 ~ 2 2 2
= 22332 - ([ L b - (X
I, = AN, = <r >Q > Q > = <v ) (9)
mo o o] o

Thus we see that I3 represents the square of the volume ratio, which is
clearly independent of the coordinate system, and is a direct measure of
the compressibility of the material. A value of I, =1 for all loadings
would represent incompressibility. The remaining two invariants, I and
I2, can be shown (see Ref. 31) to be mathematically constant under proper
transformations, but do not have a simple physical interpretation. All of
the invariants are functions of the material and the applied loads.

The stress-strain relations are obtained by differentiation of the
energy function relative to the strains, so that, for small deformations
we have the familiar form (Ref. 33 or 35)

05y = dw/deii (10)

For the case of an isotropic material, where W is given as

= E - 2 2 2
W= 2(1 - 20) (1 + ) [(l wle, T+ €22 T €ag) * 2u(€ll€22 ML PPLIN S esaelli
(11)

Equation (10) yields Hooke's law in the form

1-)E

- 4 o—uE + uE
°11 T (T-2p) (1+) S (1-2p) (1+y) ®22 7 (1-20) (1+)) C=s

E 1-W)E uE
ee = (T30 (Th0 €11 * (T-20 (0r) a2 (T2) (T Ssa ) (12)

- E - us (- E
Ogg = (1-23)(1+u> €0 Y T2 (1) G2t (l-2u$(l+u) €35 J

For the more general case of an anisotropic material with large deformations,

an analogous differentiation (Ref. 32) yields (for the case of no shear
strains)
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o, = Mg + MOS+2D) g+ p )

O,y = Mot + O+ A2 Yo+ P (13)
04y = xi¢, +n T ) e

9 = 0 i#j )

where the gquantities ¢, ¥, and P depend upon the partial derivatives of

the W function with respect to the three invariants,. Il, I2, 13 as

given by
_ 2 oW A
¢ - \/— SI
I 1
3
2 oW
VE— 6I2
3
p= 2VyI X
3 dIS )

Furthermore, it can be shown that Equation (13) reduces to Egquation (12)

If the quantities ¢, ¥, and P, which are functions of the partial
derivatives of W, are known, then Equation (13) permits one to compute
the stresses in terms of the extension ratios or vice versa. On the other
hand, if these functions are unknown (as in the present study) but the
extension ratios are known instead, then Equation (13) can be used in a
different form to determine the unknown partial derivatives. Thus, solving

Equations (13) for the three partial derivatives, we have

ow_ Y I, B y I, 2 2 2 4 22 2 2\ | 22 2 22
GIl =72 ¢ 5p o.M (P2 TN 922t Mz = M 9azhs \ M 7 s
oW N*ISHL Y 1Is " a AN 2 \2 . \2 \2 1

I~ 2 Y7 2D 9.Us ~ ‘%/4— %22 \ M1 T M)t T (P2 TN g ? (15)

I




-12-

It can be seen that static tests in which the three stresses and
strains are measured for a given loading provide the necessary information
to calculate the three partial derivatives (dW/éIi). The W function can
then be determined by mapping these partial derivatives over all loadings
and then generating the energy function W which satisfies the data. 1In
order to do this, we shall assume that

353§¥7 =05 i # i,j = 1,2,3) (16)

1]

on the basis of experimental work performed on rubber-like materials
(Refs. 36 through 39). This last assumption, along with that of an initial
zero value of W, permits us to write W in the functional form

W= fl(Il - 3) + f2(12 - 3) + fs(Is - 1) (17)

where the functions fl, £ and f3 are unspecified except that they must

2,

pass through the origin; that is, the unloaded condition corresponds to

values of Il, I,, and I3 of 3.0, 3,0, and 1.0, respectively (see Eq. (4)).
For the present study, we shall represent the function W by a power

series expansion of I, -3, I, -3, and I_ - 1. That is,
W=B (I -3) +B(I -3)%+...+ B (1, - 3)7
*C I, =3) +c (1, -3+ ...+ c (1, - 3)7
+D. (I, -1 +D (I, - D%+ ...+ D (I, - 17 (18)

Experimentally, we find that n = 3 is sufficient to describe the behavior
of all arteries tested.

The coefficients of the W function in Equation (18) can be determined
from the stress-strain data, since the partial derivatives of W are re-
lated to the stresses and deformations by Equations (15). Thus, if the
partial derivative 6W/8Ii obtained from Equation (15) using the experi-
mental values of stresses and extension ratios can be fitted by a second-
order curve to yield

%%: = A +A (I -3) +A (I - 32 (19)
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then the corresponding coefficients of the W function are given by

W = —g¥l a(r, - 3) + £(1,,1) (20)

so that substitution of Equation (19) gives

A A
= - -2 - 2 -3 - 3
W=A(I -3+ —5 (I -3)"+ 5 (1 -3)" + £(1_,I) (21)
Hence, from Equations (18) and (21), we see that
B, = A ; B, = A2/2; B, = A3/3 (22)

The remaining constants of Equation(18) are found in a similar manner from
the derivatives 6W/812 and Bw/él3 so that W is defined over the test
domain.

At a given strain level, the elastic constants are determined from
the local slopes of the stresses; that is, the change in stress at a given
strain level can be expressed as

doll 6011 ' 6011
d°11 = ‘”1 dxl + rxz d)\z + Qg——)\a d7\3 (23)
P P

P
where the subscript p means that the derivatives are taken at a fixed

pressure level. This expression can also be written in the form

200, LN ar ool ar d0 an

_ 11 1 11 2 11 3
(3 () (3 G303 (20

1 b 1 2/ 2 3 p 2

and we observe that dxl/xl is simply the change in strain; that is,

d%l d%z d%s
de |, = s de,, = T de,, = 3 (25)
1 2 3

Hence, substitution of Equation (25) into Equation (24), yields the pertur-
bation stress-strain equation,

doll = B.].l dell + 512 d€22 + Bla d€33 (26)
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where
éoll acll doll
B11 =M 6)1 ? 612 = A, 6x2 ’ B13 = 2 5%3 (27)

Equation (27) is then a perturbation Hooke's law for a nonlinear, aniso-
tropic material. The remaining two equations are determined in exactly
the same manner, so that the stress-strain equation takes the form

doik = Bijdejjéik(l,J,k =1,2,3) (28)

where 6ik is the Kroenecker delta defined as

|10 0
B = |0 10 (29)
00 1

From these equations, we define each coefficient of the Bij matrix as
follows:*Z

Bcll 6011 doll )
Bll = A AA 5 B12 = x2 I} 5 B13 = xs oA
1 2 3
6022 6022 6022
B21 = kl oA 5 B22 . %2 6%2 ; B23 - xa 6}3 (30)
6033 8033 6033
Bar = N, O 5 Baa = %3 oA ; Bas = P oA
1 2 3 _)

The elastic coefficients are therefore determined by partial differentia-
tion of the stress Equation (13) in terms of the known extension ratios
and the W function constructed from the experimental data. The expanded
form of the B8's in terms of measured quantities and the coefficients

of the W function is not presented here, owing to its length, but is
presented in Appendix A.

The final determination of the B's, in reality, satisfies our initial
requirements; that is, we are now able to determine the local elastic
constants from the original displacement and pressure data and to write
these in terms of a usable Hookean equation (Egq. (26)). (Appendix B provides

®Note that these coefficients represent a rather special case, since the
shear coefficients (B,, i=1,2,3 and, k=4,5,6;see Ref 34) do not appear.
This is a consequence of the symmetric loading treated here and of the

thin-wall (membrane) assumption (see p. 6). It should also be noted that
the nine B's of Equation (30) actually reduce to six independent constants,
owing to reciprocity (Ref. 33) since B,. =B

ij jit
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an example of their use.) If desired, one can also calculate the more

familiar Young's Modulus Ei and Poisson's ratio “ij from the computed

Bij for the three coordinate directions 1,2,3 (6,z, and r). For the

assumed material, these quantities are given by (see Ref. 34)

= Lt L. = =, /A, .
By = L/aggs wyy = m%35/9;

where aij refers to the coefficients of the stress-strain equation

when written in the form
dejx = Bix [@34]) 9934

Comparison of this equation with Equation (28) shows that the g-matrix

is the inversion of the PB-matrix; that is,

. -1
a; .| = . .
(@451 = (P15]
Therefore, Young's Modulus Ei and Poisson's ratio ”ij are extracted

by inverting the PB-matrix of Equation (30) and applying Equation (31).

For an isotropic material, we would, of course, find that

E =E_ =E and

(31)

(32)

(33)

(34)
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4. EXPERIMENTAL TESTS AND APPARATUS
The purpose of these experiments was to determine the geometric and
elastic properties of various human and canine arteries. Both static and

dynamic tests were carried out, but the latter are not reported herein.
4.1 Selection and Preparation of Test Specimens

In all, 14 different arteries were actually tested. (See table below).

ARTERY SPECIMENS

Human Canine
Brachial (4)3 Thoracic Aorta (2)
Mesenteric (2) Femoral (2)
Splenic (2)

Iliac (1)

Femoral (1)

All arteries were tested within a few hours after death, and in only one
case was a specimen accepted for study that was not pathologically normal.
The normality of each specimen was checked by the assisting pathologists
and by Vidya's medical consultant, Dr. D. L. Bruns, who is a cardio-vascular
specialist.

Table I lists the clinical information on each arterial segment, as
well as the time elapsed from death to excision and testing. About one-
half of these arteries were excised and tested within 6 hours after death,
and the remainder were excised within 6 hours and tested within 2 days.
During this time, they were placed in normal saline and kept refrigerated
at 10° C. The in-situ length of each artery was measured prior to excision
so that the natural extension ratios could be calculated.

All of the branch arteries of the excised specimen were cut long in-
tentionally (approximately 1/4-in.), so that they could be ligated (i.e.,
tied off) at some distance from the main artery being tested. Ligating the
branches at their tips proved very useful throughout the tests, because it
minimized the local stress concentrations at their junctions with the test
specimen. Figure 7 shows this effect for two different thoracic aortas,
one of which was tied off at the tip of the branching vessel and the other
near the junction. The differences in the local tube expansion at the
juncture of the branch are apparent in the photographs. The branches on the
specimen at the left were ligated at the juncture, and the specimen is con-

siderably deformed under pressure. On the other hand, the branches of the

3 .
The number in the paranthesis refers to the number of specimens tested.
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specimen on the right were ligated near their outer extremities, and the
specimen remains essentially a cylindrical tube.

Prior to testing, each specimen was cleaned of all the surrounding
tissue by carefully stripping away the excess material until the adventitia
was exposed. Next, the branch arteries were ligated and the plexiglass end
pieces were fitted to each end of the artery. One of these plexiglass
pieces was hollowed for pressurizing the specimen. The other end piece was
a solid plug. After installation of the plugs, the artery was pressurized
with air and placed in saline to check for air leaks. If any leaks developed,
they were corrected by retying the leaky branch. Sometimes, excessive leak-
age could not be corrected by this technique because the leaks were too
close to the arterial wall. It was then necessary to shorten the test
specimen by removing the faulty section. All samples were kept in normal
saline at 10° C until testing began.

4.2 Static Tests

A photographic technique was employed to determine the static elastic
characteristics of various human and canine arteries. Each test specimen
was exposed to soft X-rays at various internal pressures. The physical
arrangement of the experimental setup is shown in Figure 8. The developed
film furnished all the information required for direct measurement of the
three pertinent dimensions: length, radius, and thickness. Figures 9, 10,
and 11 show the positive contact prints of the X-ray negatives for a series
of pressure-displacement tests for three different arteries.

Prior to testing, the specimen was removed from the refrigerator and
brought up to room temperature by placing it in a large container of warm
saline (21° to 25° C) and held there for 5 minutes. All tests were per-
formed at room temperature (21O to 25° c).

Since the artery wall thickness was to be measured by X-ray photography,
and since water, blood, and saline all have roughly the same density as the
arterial wall, it was decided to pressurize all test specimens with air, and
all saline was carefully removed from each specimen just prior to testing.
This procedure insured sufficiently high resolution of the inner artery
wall on the X-ray film to permit accurate measurements of the wall thickness.

The specimen was then placed in its holder (see Fig. 8) and oriented
so that it lay flat against the vertical film. This was necessary for the
unweighted tests, because some specimens were curved (see Fig. 10) so that
their projected length on the film would otherwise not agree with their
centerline length. Addition of axial weights straightened the artery and
eliminated the problem.
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7)

¥

Each specimen was initially pressurized to 300 mm Hg. and deflated to
This cycling eliminated hysteresis in the pressure-
Bergel (Ref.

’ zero several times.

displacement data and yielded repeatable experimental data.
and Remington (Ref. 17) have observed and discussed this phenomenon in

The actual tests were a simple matter of X-raying the specimen at var-
A

their reports.
ious internal pressures with a fixed axial weight and, then, repeating with
Generally, three or four axial weights were used.

other axial weights.
relaxation effects had subsided and that true static data were obtained.

1- to 2-minute pausé’was taken between X-rays in order to insure that
Periodically throughout the tests the specimen was bathed with saline

to keep it from drying out.
in-situ length, and retake the pressure-displacement data.
Although the specimens were kept in normal saline solution and refrig-

The final step in testing was to stretch and fix each specimen at its
some tests were repeated at 2-day intervals to ascertain whether

erated,
rigor mortis effects might change the elastic behavior.

4Zathan,-et al. (Ref. 40) and our own observations indicated that nearly
all relaxation effects in arterial segments subsided after 1 minute.
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5. INSTRUMENTATION AND CALIBRATION

5.1 Aneroid Manometer

The aneroid manometer used to measure internal pressure was a standard
medical Tycos Aneroid Manometer. It was calibrated (statically) against
a column of mercury and found to be within the manufacturers specifications
(+1 mm Hg. at 300 mm Hg.).

5.2 X-ray Apparatus

The X-ray assembly used in these studies was a Westinghouse dental
X-ray product. The settings required to obtain proper film exposures, when
the film and test specimen were placed 25 (+1/16) inches away, was found
to be 60 mAs at 42 kV. The film used throughout the tests was Kodak Indus-
trial Film, Type AA,

6. DATA REDUCTION

The exposed X-ray films, along with the recorded values of internal
pressure and axial weight, served as the raw data. In the interests of
increased accuracy, each negative was magnified approximately 15 times on
an Itek 18.24 Reader-Printer, which furnished 2- by 4-foot positive prints
for measurement purposes. A full-scale portion of such a print is shown
in Figure 12. Note that the inner and outer edges of the artery wall are
clearly discernible. A reference cylinder of known diameter was included
in the picture to give the exact magnification of the specimen. Because
the test specimens are not always straight cylindrical tubes, the inner and
outer diameters were usually determined by using a planimeter to measure
the inner and outer cross-sectional areas over a considerable length of the
test specimen. This length was taken as the largest length over which the
diameters are relatively unaffected by presence of the two ligatures used
to mount the specimen to the end plugs. In cases for which the specimen
was very nearly cylindrical, the inner and outer diameters were read directly
at several positions and averaged over the length. The length measurement
used to determine axial extensions was taken to be the centerline axial
distance between these two ligatures.
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7. TECHNIQUE FOR DETERMINING THE ELASTIC PARAMETERS

If the three components of stress and strain could be measured directly,
then the determination of the strain energy function W and the associated
elastic constants from the experimental data would be a relatively straight-
forward, though lengthy, procedure as outlined in Section 3. However, as
the stresses and strains cannot be measured directly, it is necessary to
deduce them from the experimental data. One of these stresses, o, (some-
times referred to as the 'hoop stress"), is simply related to the measured
pressures and displacements (only for the case of zero axial weight) by the
hoop stress equation. This equation can be derived by taking the limit of
Equation (B-18) as the wall thickness approaches zero. The remaining two
stresses are approximated by the mean axial stress (end force over cross-—
sectional area) and mean radial stress, (-p + 0)/2. Hence, for the zero

weight case, the stresses are written as:

o,, = pa/h (35a)
_ 2

o,, = pa /2rmh (35Db)

Ogg = -p/2 (35¢)

Therefore, for the unweighted case, we can indeed determine all of the
stresses and displacements and, from these, determine the strain-energy
function W through its partial derivatives by use of Equations (15),
(18), (19), and (22). with axial weights, however, Equations (35a) and
(35b) no longer hold, because they become functions of the weight as well
as the pressure.

It will be recalled that the energy function W must apply for arbi-
trary loadings of a given material. Hence, if the W function determined
from the unweighted data is to be used for extracting the elastic constants,
that same function must be valid for the weighted specimen as well. There-
fore, we shall first determine a W function for the unweighted specimen
by curve-fitting the displacement data as a function of internal pressure
as follows:”

Il

2
a a, +ap+ap

b

i

2
b+ b2p + b p (36)

2
L = 2, + zzp + z,p

It was found that a least-squares, second-order curve fit was sufficient
for all data taken in these tests.
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where a, b, and L refer to the inner and outer radii and the measured
axial length, respectively, and the subscripted quantities are the desired
curve-fit constants. By using these curve fits, the associated extension
ratios, and the simplified stress Equations (35), the W function is
obtained from its partial derivatives in the manner described previously
(see Egs. (15) to (22)).

By using this W function, the stresses Osp and 0. for the
weighted cases are calculated (using Eq. (13)) and compared with the approxi-
mated membrane stresses, which are determined by the mean axial force

(Wt + vazp) per unit area, and the mean radial stress and are given as

2 W
ap . t
22 2rmh ZWrmh

(37)

o = -p/2

where W is the axial weight. If the deviations of these two stresses
are outside of the experimental accuracy, the W function constants

(Bs’ Cs, and DS) are readjusted and the stresses for all loadings, includ-
ing the unweighted case, are recalculated until satisfactory agreement is
obtained. 1In this manner, the final W function constants were developed
for each specimen, from which the elastic constants can be extracted.

About one-half of the final W function constants were determined on the

first curve fit. The remainder required anywhere from 2 to 10 iterations.

STEP 1 - CURVE-FITTING THE DISPLACEMENT DATA

It was not always possible to approximate the displacement data with
Equation (36) (even for zero weight) to the specified tolerances (see table
of uncertainties below) over the entire range of internal pressures; there-

fore, the data were curve-fitted over most of the test domain and limits
(maximum and minimum pressures) were placed on these curve-fit equations.

EXPERIMENTAL UNCERTAINTIES

Pressure Diameter Length Thickness
(mm Hg.) (in.) (in.) (in.)
+1 +0.002 +0.002 +0.004

In general, these pressure limits are widely separated (approximately from
70 to 240 mm Hg.), so that the data are fitted over the range of pressures
ordinarily measured on the arterial side of the human and canine vascular

systems. Table II shows all the constants and the acceptable pressure
limits for all specimens tested.
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STEP 2 - DETERMINING THE UNSTRESSED DIMENSIONS

The partial derivatives of W for the zero weight tests are calcu-
lated from the stress-displacement equations (see Eq. (15)). In order to
define the extension ratios appearing therein, we must know the dimensions
(ao, bo’ and Lo) of the unstressed specimens (at p = 0 and Wt = 0).
Generally, this information was obtained directly from the X-ray film for
the unloaded condition, but sometimes at this condition, owing to the lack
of internal pressure, the tube was not of circular cross section. Hence,
it became necessary to define equivalent dimensions by extrapolating from
the lowest pressures at which the tube was cylindrical. In such cases,
the tube length Lo was assumed to be unaffected by the oblateness, and
was taken to be the measured value. This leaves the unstressed radii, a,
and bo’ to be determined by extrapolating from the low internal pressure
(10 to 50 mm Hg.) data. The final values of a,; bo’
tabulated in Table II for each specimen. After the initial displacements

and Lo are also

were determined, the partial derivatives of W were computed in the pre-
viously described manner. Next, these computed derivatives were fitted
with a second-order, least-squares curve. A comparison between the com-
puted derivatives as given from the experimental data and Equation (15) and
the curve-fit derivatives, is shown in Table III. The W function con-
stants (for the unweighted case) are generated by equating the derivative
curve-fit constants to the corresponding W function constants, as shown
in Equation (22). The finalized values which are applicable between cer-

tain limits of the invariants (Il, Iz, and Is) are given in Table IV.

STEP 3 - DETERMINATION OF THE ELASTIC CONSTANTS

After the W function has been fixed (see Table IV), the B's, a's,
E's, and u's are calculated for all loadings. This is done by first
computing the B matrix as indicated in Appendix A. The o matrix is
determined by inverting the computed B matrix, and the customary elastic
constants (E's and | 's) are calculated from Equation (31).

Certain additional checks can be made on the finalized Bi. and

J
W function, and a discussion of these is found in Appendix C.
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8. EXPERIMENTAL RESULTS AND DISCUSSION

8.1 Experimental Displacement Data

The measured values of internal and external radii and axial length
for some typical test specimens are plotted in Figures 13 and 14. The
observed variations of artery dimensions with internal pressure have been
approximated by second-order, least-squares curve-fits (see Section 7.1),
as shown in the figures. Since the analysis of Section 3 requires a know-
ledge of the unstressed dimensions (ao, bo’ and LO) for each specimen at
Zzero pressure and zero axial weight, these quantities are indicated'by the
darkened data points. 7

Other test specimens yielded similar curves not shown in these fig-
ures. Rather than presenting all such plots for each specimen subjected

to several axial weights, the resulting curve-£fit constants (a b z

i’ i’
o’ and L ) are tabulated

for each specimen in Table II with the approprlate pressure limits between

i =1,2,3), and the unstressed dimensions (a , b

which the curve-fit equations are valid. These pressure limits are necessary,
because it was not possible to fit all the data within the experimental
accuracy with a single, second-order curve. However, the data were success-
fully fitted from pressures of 40 to 270 mm Hg., which covers the normal
operating range of pressure in both the human and canine arterial systems.

At first glance, some of the coefficients appear to be quite small
(see Table II), but it should be remembered that these coefficients are
multiplied by the square of the pressure. Further, it will be noted that
the slopes of the curves of radii versus pressure (Figs. 13 and 14) become
very small at higher pressures and that a zero slope infers infinite stiff-
ness. Hence, a small change in the slope of the curve fit produces a large
change in calculated elastic constants.

With no axial weight applied to the specimen, the radii and length
continually rise with increasing pressure, but the wall thickness deLreases
with increasing pressure. Figure 15 shows this decrease in thickness
clearly. It can be seen from Figures 13 and 14 that the rate of change of
dimensions is greatest over the first 60 mm Hg. and becomes quite small at
the highest pressure levels. In general, the distentional behavior of all
the specimens within the first 60 mm Hg. are similar with the possible
exception of the thoracic aortas. The thoracic aortas exhibit more of an
"s" shaped radius versus pressure curve, commonly referred to as a sigmoid,
as shown in Figure 14(a). This type of behavior results in an inflection

point in the radius and length data at about 50 mm Hg. However, for pressures
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above this inflection point, the thoracic aorta behaves in the same manner
as the other specimens. Therefore, the thoracic aorta data were curve-
fitted only for pressures above the inflection point. Since the sigmoid
effect is evident only below 50 mm Hg., it is considered to be of no con-
sequence in describing the elastic behavior of arteries.

If the arterial wall were composed of an incompressible, isotropic
material, as suggested in the literature, and does not experience an axial
force, then the length of a specimen should not change with pressure (see
Ref. 15). However, for zero axial weight condition, it is seen from Fig-
ures 13 and 14 that the length increases with internal pressure for all
specimens. Hence, we conclude that arteries are not incompressible, iso-
tropic materials. It will be noted that, generally, the length approaches
the in-situ length as the internal pressure becomes very high. In some
cases, such as Figure 13(a), this does not appear to be true. However, it
should be mentioned that we have no way of placing experimental tolerances
on the in-situ measurements, so discrepencies of 10 percent, such as those
found in Figure 13(a), are possible.

The addition of an axial weight to an unpressurized specimen results
in lengthening the artery and decreasing its radii and thickness. Most
specimens were exposed to a range of axial weights which stretched them to
values greater than their in-situ length. In some cases, excessive
weights caused such a decrease in radius that the specimen developed axial
wrinkles. In such cases, the displacement data were rejected, since the
specimen was no longer a cylindrical tube. (Such was the case for all of
the canine femoral arteries.)

The pressure-displacement data for the weighted specimens (Figs. 13
and 14) were also curve-fitted with a second-order curve, and, in general,
all of the weighted specimens exhibited an increase in radii and a slight
decrease in thickness (Fig. 13), but a decrease in length with increasing
pressure. The fact that the specimen becomes shorter with increasing
pressure may seem somewhat surprising, but is associated with the aniso-
tropic nature of the arterial wall. (The physical reasons for this behavior
will be discussed later in this section). It will also be noted that the
length of the weighted specimens tends to approach the in-situ length with
increasing internal pressure, so that the artery length of both the un-
weighted and weighted specimens approach the same value at the highest
tested pressure levels (300 mm Hg.). Such observations are not new.

McDonald (Ref. 6) noted a similar result for unweighted specimens.
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Since the unweighted specimen increases in length toward the in-situ
value and the heavily weighted specimen decreases in length toward the in-situ
value, it follows that there will be some intermediate weight for which the
length of the specimen will be constant at the in-situ length (see Fig. 16).

Therefore, this weight for which the length remains constant must corres-—
pond to the axial tethering force in the body. Hence, we conclude that
length changes in arteries in vivo are minimal. As a check on the above
reasoning, the weight required for zero change in length with pressure (the
nulling weight) was obtained for each specimen (by cross-plotting the experi-
mental data), and these weights were compared with those required to stretch
the specimen to its in-situ length. This comparison is tabulated below,

and it can be seen that the agreement is quite close, except for Brachial II.

COMPARISON OF THE TETHERING FORCE AND THE NULLING WEIGHT

Specimen Tethering Force Nulling Weight
(grams) (grams)
Brachial 1 45 41
Brachial II 200 20
Brachial III 16 20
Brachial IV 20 22
External Iliac 21 20
Splenic I 45 50
Thoracic Aorta I 94 -
Thoracic Aorta II 130 150
Superior Mesenteric 28 32
Femoral I 50 -
Femoral II 50 52
Femoral III 20 20

(It is now suspected that an error was made in the length measurement for
that specimen, either before or after excision, but the specimen was un-
fortunately discarded before this suspicion could be verified.) These
results appear to clarify Lawton and Greene's (Ref. (14) observation that,
in some cases, an artery contracts in length during systole. This behavior
would be quite typical of a specimen exposed to a tethering force somewhat
greater than the ”nulling weight, " and it seems reasonable to assume that
such was the case.

Although the absolute wall thickness in all cases decreases signifi-
cantly over the first 80 mm Hg. of pressure, it becomes nearly constant

(see Figs. 15 and 17) for all higher pressures, irrespective of the axial
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weight. This constant value is roughly given at 100 mm Hg. as 0.019
+0.005 inch for all specimens except the canine femoral arteries, which
were not included owing to their smaller diameters. Such a figure may
prove useful in future analyses where knowledge of the wall thickness is
required. The nearly constant wall thickness does not hecessarily imply
that the radial modulus of elasticity is infinite, because the radial
modulus of elasticity, as determined from the analysis presented in Sec-
tion 3, is extremely sensitive to very small changes of the wall thickness,

especially for specimens with thin walls.

8.2 Comparison of Dimensional Data

It would be highly desirable to compare the dimensional displacement
data presented herein, whenever possible, with similar data found in the
literature in order to check the validity of the measured wall thickness,
diameter, and length. However, such information is nearly nonexistent in
the literature, since most investigators who performed static elastic tests
on whole arteries did not measure all of these quantities. Instead, some
have measured the inner volume, others have determined the outer diameter
and length, still others did not present their raw displacement data. To
our knowledge, no one previously has measured the variation of radius,
length, and thickness, simultaneously, with loading. Generally, most
investigators would measure two of the three dimensions and make an assump-
tion about the third. Invariabily, the assumption concerns the behavior of
the most difficult item to measure, that is, the variation of wall thick-
ness with pressure. Consequently, it is of interest to compare the wall-
thickness measurements with the limited data which are available.

Apparently, Bergel (Ref. 7) was one of the investigators who did mea-
sure the wall thickness and outer radius for various specimens at only one
pressure (100 mm Hg.), but he did not tabulate each quantity. Instead, he
tabulated theratio of thickness to outer radius, at the one pressure, for
many canine arteries. This can serve as a useful nondimensional comparison.

Fenn (Ref. 15) also has published values of wall thickness and radius
at one pressure (0 mm Hg.), so his data can also be compared to the equiva-
lent test data presented herein. Table V shows these comparisons of h/b
for both Fenn's and Bergel's data.

In general, we note that, whenever direct comparisons are possible,
the data presented herein are in excellent agreement with Bergel's data
(£5 percent), but they do not check Fenn's data at all. 1In fact, Fenn's
data exceed those presented here by about 50 to 80 percent. However, since
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the number of comparisons per type of artery are limited to one or two, and
since the arterial dimensions are known to vary from person to person, one
cannot place much importance on these observations or make of any positive
conclusions. Further comparisons are impossible, owing to the lack of
similar data.

The in-situ extension ratio (the ratio of the in-situ length to the
excised length) is also presented in Table V. Again, the data taken in
the present study agree quite well with Bergel's data for the specimens
which can be compared.

8.3 Volume of the Arterial Wall

We have already discussed the fact that much of the earlier experi-
mental and analytical work concerning arteries was based upon the assump-
tion that arteries are incompressible. The analysis of Appendix B indi-
cates that such a material must be characterized as an isotropic material
with a Poisson's ratio of 0.50, or a transversely isotropic material in
the r, 6 plane. No other type of material (i.e., either isotropic with
i # 0.50 or anisotropic) can exhibit a constant volume under load. Since
the radius, thickness, and length of each test specimen were all measured
in the present tests, we can calculate the volume of the material at each
load and determine the compressibility of the material by comparing that
volume with the volume at the unloaded condition. The results of these
calculations revealed that, in nearly every case, the material volume
changed by a significant amount (20 to 40 percent) when the specimen was
exposed to loads comparable with those experienced in the body. Figure 18
shows the arterial wall volume as a function of pressure for several speci-
mens at various axial weights.

The volume of the wall depends upon all three normal stresses (06’ 0,
and or) and, if the material is anisotropic, upon the six local elastic
constants. Various combinations of these stresses and elastic constants
can cause either an increase or a decrease in volume. For example, con-
sider the loaded specimen to be anisotropic and, for the sake of discussion,
let the values of Poisson's ratio be very small. The local strains in the
wall will then depend upon the ratio of the three stresses to their corres-
ponding moduli of elasticity, so that

#

(38)
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The change in volume is given by the sum of these strains, that is

AV/V = €eq + €, + ¢ (39)

r
For a positive internal pressure and a tensile axial load, two of these
terms (ee and ez) are positive because Ogs O, E@’ and EZ are all
positive. But the radial strain €, is negative because Oy is negative
(i.e., the wall is in compression). Therefore, the relative magnitudes of
(ee + ez) and € will dictate whether the change in volume is positive
or negative. Hence, both increases and decreases in volume can occur, and
such was the case with some of the specimens tested herein.

In general, the volume decreases, which means that the radial strain
dominates the volume expression. However, the radial stress is smaller
than the circumferential or longitudinal stresses. Hence, the elastic
modulus in the radial direction must be much smaller than in the other two

directions.
8.4 Elastic Constants

8.4.1 Young's Modulus

The nonlinear theory developed in Section 3 enables one to extract the
six elastic constants (the B's) from the experimental data. By proper
manipulation (see Section 3), these elastic constants can be used to deter-
mine the three Young's Moduli of elasticity (one modulus for each of the
three orthogonal coordinates, r, 6, z) and the corresponding Poisson's
ratios. The resulting moduli are plotted as functions of pressure in Fig-
ures 21 through 34 for each artery tested.

For the tests with no axial weight (Figs. 19 through 34), we see that
the circumferential modulus of elasticity Ee increases with pressure.
With the single exception of Figure 20(a), the axial modulus E, also in-
Creases with pressure, while the radial modulus Er stays roughly constant.
Generally, E9 is greater than Ez, and both of these are greater than Er'
For Brachial II (Fig. 20(a)), we see that the EZ and Er decrease with
an increase in pressure. The reasons for this apparent trend are not known.
However, we note that this particular specimen has the highest h/rm, so
that perhaps the membrane assumption is not quite as valid as with other
specimens.

The general trends of the elastic constants can be associated with the
presence of the individual biological materials in the wall. It was pointed

out in Section 2 that arteries are composed of annular layers of material of
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nearly the same elasticity, with the exception of the much stiffer collagen-
ous fibres. These fibres form a double criss-cross helical net around the
inner layers and can be characterized by the ”finger puzzle" effect (see
Fig. 5). Since increased internal pressure causes a larger increase in
circumferential (hoop) stress than in longitudinal (axial) stress (see
Appendix B for exact equations), the net result of increased internal
pressure is to reorient the fibres in the direction of maximum stress so
that they tend to align themselves circumferentially, thereby making the
material effectively stiffer in that direction. Hence, E, increases more
rapidly with pressure than does E (see Fig. 21(a)). The high internal
pressure tends to compress the inner layers so that the actual tube thick-
ness is diminished considerably. The collagenous fibres, which are thin
chords acting in the ©6-z ©plane, do not affect either the radial compres-
sion® or the radial elastic modulus, Er' (See Figs. 19 through 34.)

For all specimens, we find that, at low pressures, all three elastic
constants appear to have, roughly, the same low Young's Modulus, (20 to
100 psi). We also note from Reference 7, that this is approximately the
value of Young's Modulus of elasticity for elastin and smooth muscle.
Therefore, it would appear that, near the unloaded condition, the elastic
moduli of arterial specimens take on the nearly isotropic characteristics
of elastin and smooth muscle, and the material is said to behave as an
isotropic material. McDonald (Ref. 6) has speculated that, under such
conditions, the stiff collagenous fibres are slack and do not affect the
elastic behavior.

With the addition of axial weight, it can be seen from Figure 21(b)
that the axial modulus Ez increases. This increase is presumably associ-
ated with the orientation of the collagenous fibres toward the axial direc-
tion, but, as the internal pressure is increased, these fibres tend to
rotate back toward the circumferential direction, and Ee increases (see
Fig., 21(b)). Hence, at some internal pressure (the "crossover" pressure),
Ee becomes equal to Ez. The crossover pressure increases with axial
weight, as seen in Figures 21(b) and 21(c), since a higher pressure is
required to reorient the fibres from a more nearly axial alignment. It
would seem reasonable that, at the crossover pressure, the collagenous

°This is analogous to compressing a large block of rubber with a flat piece
of metal in the middle, normal to the applied load. One must compress the
rubber to nearly the thickness of the metal before noticing its presence.
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fibres are symmetrically arranged at 45° to the z-axis, so that the material
would behave identically in the axial and circumferential directions.

A comparison of the stresses and extension ratios at the data points
taken closest to the crossover pressure (as determined from crossplots)
indicates that both the stresses and the extension ratios are essentially

equal in the axial and circumferential directions (see Table below).

COMPARISON OF 09 AND Oz, AND Xl AND %2 NEAR THE CROSSOVER
PRESSURE FOR SEVERAL SPECIMENS
P
1 P a l9) A A crossover
Vessel t 6 z * e from
(grams) | (mm Hg.)| (psi) (psi) crossplots
(mm Hg.)
Splenic IB 20 100 9.7 9.5]11.20] 1.20 100
Brachial IIA 20 110 8.5 7.8 1.13 ] 1.17 120
100 230 21 24 1.12 | 1.19 226
Brachial IIIA 20 100 21 20 1.23|1.21 96
50 150 27 28 1.24 | 1.25 155
Brachial IVA 32.4 100 17 16 1.30 | 1.30 100
55.9 130 26 26 1.311{1.31 132

It should be noted from Figures 19 to 34 that the radial modulus of
elasticity is relatively unaffected by either internal pressure or axial
weight. This suggests that the stiffer collagenous fibres, which lie
essentially normal to the radial direction, do not affect the elastic
constant in the radial direction.

When a specimen is exposed to a very high axial and/or circumferential
stress, one would expect that the corresponding elastic constants Ez and/or
E@ will gradually approach the values of the collagenous fibres themselves
as the fibres become aligned with the direction of stresses. Figures 20(d),
22(c), and 23(b) are test cases with high axial stresses and much lower
hoop stresses, and Figures 24(c)., 33, and 34 are other test cases with the
opposite characteristics, that is, high hoop stress and low axial stress.
From these figures, we note values of Ez vary from 400 psi to 2000 psi
and EG from 300 psi to 1000 psi. Various investigators (see Refs. 6 and
7) have tabulated elastic constants for the collagenous fibres and found
values of Young's modulus varying from 400 to 1500 psi. 1In general, we
see that, for very high loadings (stresses), the moduli of elasticity do

approach these established values of collagenous materials.
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In summary, the general behavior of the anisotropic elastic moduli
seem to be associated with the orientation of the collagenous fibres.
Arteries appear to be initially isotropic, with a modulus of elasticity
equivalent to that found for elastin and smooth muscle (about 60 psi).

For the in-vivo loads where approximately equals O, the specimens

o
behave as transversely isotrop?c materials. For other loads, where Og
does not equal O, the test specimens behave anisotropically, having a
greater elastic modulus in the direction associated with the higher stress.
The radial modulus is the lowest of the three and is essentially constant
for all loadings, being unaffected by the orientation of the collagenous

fibres.

8.4.2 Poisson's ratio

It is difficult to say much about the various Poisson's ratios ()
presented in Figures 19 through 34, except that, in general, their wvalues
are realistic. A realistic value of 1 falls between +1.0 and -1.0.
These limits can be established by considering the bulk modulus of elas-
ticity for a special anisotropic material, one which possesses identical
values of uij in all planes, (urz = Upp = Hpg = Hgp = Mgy = “ze)' By
considering the two limiting values of the bulk modulus (0 and «), one
finds that the corresponding values of | are given as -1.0 and +1.0,
respectively. Although we normally do not think of a Poisson's ratio as
being negative,for an anisotropic material it simply indicates that a
positive normal stress in one direction can generate a positive normal
strain in one of the other two orthogonal directions.

In some instances, the p's do not fall within realistic limits over

portions of the pressure range. The reason for the unrealistic p's can

be shown from the approximate form of “ij
2By i #3 (33, = 1,2,3) 40
“1) BlJ/Bll #J(’J’ IR ( )
We note that, when Bii becomes small, the p's exceed a realistic limit
of 1,0. Con ucntly, there are small bands of the pressure range in which

1seq
the value of | cannot be calculated; such was the case for Brachial II,
20-gram weight (see Fig. 29(b)). For this reason, it is perhaps better to
use the well-behaved, though less familiar, B's, rather than the more con-
ventional E's and y's. Figure 35 shows the variation of the elastic

coefficients Bij with internal pressure for two different specimens.
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8.5 Transverse Isotropy
A cursory glance at any of the Young's Moduli shown in Figures 19
through 34 shows that arteries generally behave as anisotropic materials.

There are, however, conditions at which E becomes equal to Ez, and

2
becomes approximately equal to | __. When this occurs, the material

ol
c;i be said to be transversely isotropiz.7 Such conditions are character-
ized by equal circumferential and longitudinal stresses and extension
ratios, (see Table on p. 30) which cause the collagen fibres to make a

45° angle with respect to the longitudinal axis. When an additional axial
weight is added at this condition, the fibres reorient themselves toward
the axial direction, and the material becomes stiffer in that direction.
However, by increasing the internal pressure again, a new condition of
transverse isotropy can be found which corresponds to a higher internal
pressure for each larger axial weight. If the pressurization were to
continue, the elastic moduli and stresses would cross over one another so
that the circumferential stress and elastic modulus would exceed the
corresponding longitudinal stress and modulus. Hence, it is possible to
construct a plot of the '"crossover" pressure as a function of axial force
acting on eachspecimen, which in reality gives us the conditions for trans-
verse isotropy.

Figure 36 shows the conditions for transverse isotropy for three
different arterial specimens. These curves are intended to indicate the
particular combination of pressure and axial weight that will cause the
material to behave as transversely isotropic. If a particular combination
of axial force and internal pressure places the load point to the left of

this curve, then the material is anisotropic and EZ > E Loads to the

right of this curve cause the material to be anisotropic, gut, in this case,
E@ > Ez'

It is interesting to note that, in all cases, the crossover pressure
which corresponds to the axial force necessary to stretch the specimen to
its in-situ length (see Fig. 36) falls within the normal in-vivo arterial
pressure range, namely pressures of 80 to 120 mm Hg. This observation is

also true of the other specimens tested, which are not plotted in Figure 36.

7Strictly speaking, transverse isotropy also implies that all the shear
moduli Bik (i =1,2,3;k = 4,5,6) are identically zero. This point has

not been clearly demonstrated.
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Hence, excised arteries subjected to in-vivo loadings seem to behave as
transversely isotropic materials. It should be noted that, for the con-
dition of transverse isotropy, arteries can be represented by four elastic
constants rather than six because Bll = 822 and Bls = 823. Further-
more, for this condition, the axial length remains constant with variations

in internal pressure (see Fig. 16 and Section 8.1).

8.6 Age Effects

There are many parameters which affect the elastic characteristics of
arteries. One such parameter which has been studied extensively (Ref. 20)
is the artery calendar age. Although we cannot furnish quantitative data
on this subject, we have been able to study four normal brachial arteries
from people of different ages. A comparison of these brachial data is
shown in Figure 37, which displays the variation of the three anisotropic
moduli of elasticity as functions of the internal pressure for specimens
stretched to their in-situ lengths. These specimens were considered to be
pathologically normal. From Figure 37, we note a consistent trend with age;

namely, that the values of E Ez, and Er at any internal pressure above

s
80 mm Hg. increase with age. 6This effect seems to indicate that an aging
process takes place in the elastic and smooth muscle and not the collagen.
8.7 Change of the Elastic Constants of Excised Arteries With Time After

Removal From the Body

One of the items studied during this program was the effect of time
after removal of the specimen from the body. To study this aspect of the
problem, static-elastic tests were performed on several specimens with a
2- to 6-day waiting period between tests. The specimen was kept in a normal
saline solution at 10° ¢ during this period.

The table below shows the specimens which were tested at more than one
time after death. The letter A or B which modifies the specimen number indi-

cates the first or second test, respectively.

TIME AFTER DEATH TO THE STATIC-ELASTIC TESTS

Specimen tested Time after death to test
(hr)
Brachial IVA 5
Brachial IVB 151
Splenic IA 40
Splenic IB 94
Femoral IIA 2
Femoral IIB 54
Thoracic IIA 3
Thoracic IIB 55
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In general, no measurable change was detected in the elastic constants
with time after death. 1In many cases, the W function determined from the
first test also satisfied the data for the second test (see Table IV for
the W function constants). For the cases in which the first W function
constants would not satisfy the data for the second test, such as with
Brachial IVA and Brachial IVB, it was found that the W function constants
did not change significantly, and, more importantly, that the various
moduli were nearly identical.

In summary, although the first test was generally within 1 or 2 hours
after death, it was found that the elastic constants do not change signifi-
cantly with time, at least for times up to 6 days, if the specimen is kept

in normal saline under refrigeration.

8.8 Shortcoming of the Analysis

In some special cases, the analysis presented in Section 3 was not
successful. That is, the strains calculated from the computed elastic
constants, using a thick-wall tube analysis, did not check the measured
strains (see Appendix B). Those specimens which did not yield satisfactory
elastic data were the human femoral artery and the canine femoral arteries
under high axial loads. Both specimens gave similar difficulties in extract-
ing the anisotropic elastic constants, namely, those of inaccuracies in the
experimental data (see Section 7). Since the nonlinear analysis is extremely
sensitive to the input displacements, a small error in input data produces
large errors in the resulting elastic constants. Owing to the small dimen-
sions of the canine femoral arteries, the heavy axial weights reduced the
wall thickness to about 0.010 inch, producing a +33-percent measurement
error. The human femoral artery was highly sclerosed and was so stiff that
its displacements were too small to generate enough variation of the strain
invariants to obtain a proper W function curve fit.

In any case, it is felt that the problem lies with accuracy of the

measurements rather than with the analyses.
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9. CONCLUSIONS

Experiments have been carried out and an analysis has been developed
for determining the elastic behavior of excised human and canine arterial
segments subjected to combined internal pressure and axial tension. The
dimensional measurements taken to deduce the elastic behavior included the
inner diameter, outer diameter, and length of each specimen for each load-
ing condition. Arteries tested included the human brachial, femoral,
external iliac, superior mesenteric and splenic, as well as the canine
femoral and thoracic aorta. The results of the present investigation
lead to the following conclusions:

(1) In all of the arteries tested, the elastic behavior of the arterial
wall can be represented by a nonlinear, homogeneous, anisotropic, compressible
material.

(2) A description of this elastic behavior requires six elastic con-
stants at each level of strain. These correspond to three values of Young's
Modulus and three values of Poisson's ratio.

(3) The anisotropic behavior seems to be associated with the presence
of the collagenous fibres which form a double criss-cross network around
the inner layers and change their orientation with loading.

(4) The circumferential stiffness approaches that of the stiff col-
lagenous fibres at very high internal pressures, irrespective of axial
loading, and the axial stiffness also approaches that of the collagenous
fibres at very high axial stress, irrespective of internal pressure.

(5) The radial stiffness is essentially unaltered by loading and
remained roughly at the value of elastin and smooth muscle.

(6) The three values of Young's Modulus (radial, circumferential, and
axial) all appear to increase with age.

(7) The artery length may increase or decrease with increasing in-
ternal pressure, depending upon the applied axial stress.

(8) At in-vivo levels of internal pressure and axial stress, the
artery length is evidently independent of the internal pressure.

(9) At in-vivo levels of internal pressure and axial stress, the
arterial wall behaves as though it were transversely isotropic, with the
same value of Young's Modulus in the axial and circumferential directions.

(10) The elastic behavior of excised arteries was found to be unaffected

by time after death when they were kept in normal saline under refrigeration.
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10. RECOMMENDATIONS FOR FUTURE WORK

The present investigation has yielded the static elastic behavior of
various excised human and canine arteries. Although this information is
only a first step toward a full understanding of the dynamic elastic
behavior of the living cardiovascular system, it does lay the groundwork
for a systematic approach to that goal. In particular, the following
recommendations are offered for future work in this area of research:

(1) During the present experimental program, oscillatory test data
on a number of excised specimens were obtained but were not analyzed, since
such an analysis requires the results of the static analysis. Now that the
static analysis is complete, it would seem appropriate to analyze the
dynamic test data, which requires extending the present analysis to oscil-
latory internal pressures.

(2) The question of the difference between the elastic behavior of
excised arteries and arteries in vivo remains unanswered. It is therefore
recommended that experimental studies be undertaken on sacrificial animals,
such as dogs or sheep, to make elastic tests of various arteries in vivo
and repeat the tests after excision. The measurements to be made would be
internal pressure, the axial stress, the artery length, and its inner and
outer diameter. The force measurements could be made by exposing the
artery, employing strain gages, and measuring the compressive axial stress
required to cancel the natural tethering stress. Various axial loads could
then be applied, and the internal pressure could be varied by injecting
drugs into the anesthetized animal.

(3) As a diagnostic technique, it would be highly desirable to deter-
mine the elastic behavior of the arteries of a human patient without
resorting to surgery. Perhaps the most promising approach for such a tech-
nique lies in the measurement of pulse-wave velocity. However, the mathe-
matical expressions for pulse-wave velocity along a realistic artery have
not yet been developed. Since the present study indicates that arteries
in vivo behave as transversely isotropic, thin-walled tubes, one can treat
them as having a single Young's Modulus by ignoring the radial elastic
effects. However, that single modulus is a function of the internal pres-
sure. This effect produces waves which change their shape along the tube
and travel at a different velocity from that of classical theory. It is
therefore recommended that a theoretical analysis of this problem be under-

taken.
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(4) It is known that the elastic behavior of veins is quite different
from that of arteries, and that veins are essentially collapsible vessels
whose internal volume varies greatly and comprises the 'venous reservoir."
In view of the importance of this behavior with regard to such conditions
as venous pooling of blood, and in view of the general dirth of knowledge
regarding venous elastic properties, it is recommended that the present

study be extended to veins in order to determine their elastic behavior.
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TABLE II

DATA CURVE-FIT CONSTANTS

BRACHIAL I A
AXTAL WEIGHT = 0O P(MAX)=302 P(MIN)= 79
A(D)= 44050~2 All)= 44268-2 A(2)= 2¢253~4 A(3)=~4.032~7
BIC)= 74055-2 B(l)= 7.055~-2 B(2)= 1e432~4 B(3)=~2¢546-7

L(0)= 7e4132-1 Z(1)= T7e242~1 2(2)= 5e299-4 Z(3)=~9e294~7

AXTAL WEIGHT = S0 P(MAX)=300 PRP(MIN)= 60
A(D)= 44050-2 All)=z €e627-2 A(2)Y= 3.279-5 A(3)==1¢306-8
BIO)= 74055-2 B(l1)= Be133=2 B(2)= 3.452-5 B(3)=-34497-8
LAC)Y= T7e132~1 Z(1)= 94244~ Z(2)==1e165-4 Z(3)= 1691~-7

PRACHTAL I1 A
AXTAL WEIGHT = C PIMAX)=298 P(MIN)= 20
A(O)= T74500-2 All)= 94381-2 A(2)= T74329-5 A(3)=~1e211-7
B(C)= 1e125-1 B(1)= 1e231-1 B(2)==5.212-6 B(3)= 9.059-8
L(C)= 1422040 Z2(1)= 127140 Z(2)= B8e159-4 Z2(3)=-1.060-6

AXTAL WEIGHT = 20 P(MAX)=300 P(MIN)= 20
A(Q)= 74500~-2 A(l)= Be497=2 A(2)= 9e744-5 A(3)=—-1e597~7
BICY= 14125=1 Bll)= 1e115=-1 Bt2)= 6.210-5 B(3)=-9.680-8
LEDY= 1422040 Z(1)= 1e4431+0 2(2)= 4¢596-5 Z(3)= 1e¢410-7

AXTAL WEIGHT =100 P(MAX)=300 P(MIN)= 59

A(D)= 74200-2 A(l)= 6.862-2 A(2)= 1e790-4 A(3)==2+644-7

B(O)= 1e125-1 B(l1)= 14003-1 B(2)= 54735-5 B(3)=~14098-8

L(d)= 14220+0 Z(1)= 149940 Z(2)==14010-4¢ 2(3)1=—-1099-8
AXTAL WEIGHT = T P(MAX) =286 P(MIN)= 60

A(D)= 74500-2 A(l)= 64055-2 A(2)= 3e165-4 A(3)=—-6e724=-7

B(l)y= 1e125=-1 B(l)= B.064-2 B(2)= 2.466-4 B(3)=-54078-7

L{OY= 1622C+0 Z(1)= 131140 2(2)=—=4¢663~4 Z(3)= 14250-6

Example: The displacements (a, b, and L) are given by

2
a = a + a + a
1 Zp SP

b =D>b + bzp + bapz
L = z, + zzp + zspg
where
A(l) = a = 4.050 - 2 = 4.050x10"° = 0.04050 inch/mm Hg.
A(2) = a, = 4.268 - 2 = 0.04268 inch/(mm Hg.)2

Etc.
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TABLE II.- CONTINUED.,

RRACHIAL I11A
AXTAL WEIGHT = 0 P(MAX)=292 P(MIN)= 39
A(O)= 64500-2 A(l1)= B.438~2 A(2)= 6e721-5 A(3)=-9,244-8
B(C)z 84800-2 B(l1)= 94940~2 B(2)= 54423~-5 B(3)=-9.650~-8
L(0)= 1eQCC+0 Z(1)= 14016+0 Z(2)= 14032-3 Z2(3)=-1e734~6

AXTAL WEICHT = 20 P(MAX)=208 P(MIN)= 20
A(D)Y= 6e500-2 All)= 7.687~2 A(2)= 1e465-4 A(3)==2e964~-7
B(O)= B.80C=-2 B(l)= 84905~2 B(2)= 1e437~4 B(3)==34071~7
L{O)= 14800+0 Z(1)= 1429240 Z(2)=~54161~4 Z(3)= 14138~6

AXTAL WEIGHT = 50 P(MAX)=300 P(MIN)= 19
A(D)= 64500-2 A(l)e 6e841~2 Al2)= 1e981~4 A(3)=-3e794~7
B(O)= 8.800-2 B(l)= 8.035~-2 B(2)= 1e964~-4 B(3)=-4.016~7
L{O)= 1400040 Z(1)= 134340 L(2)==44965~4 Z2(3)=~T7e681~7

AXTAL WEIGHT = T P(MAX)=299 P(MIN)= 60
A(O)= 64500~2 ACl)= 7.298-2 A(2)= 1e376-4 A(3)1=—-2e¢305-7
B(Os= 8.800-2 B(1)= 8.296=-2 B(2)= 1¢379-4 B(3)=-2533-7
L(OC)y= 10CC+0 Z(1)= 1305+0 2(2)= 14592-8 Z2(3)=-54307+0

BRACHIAL 1v A
AXTAL WEIGHT = O P(MAX)=300 P(MIN)= 27
AlD)Y= 74810=-2 A(l)= 14050-1 A(2)= Te666-~5 A(3)=-9e734-8
B(O)Y= 14045~ Blle= 1e248~-1 B(2)= 3.302-5 B(3)=—2.057-8
L{O)= 1462840 Z(1)= 1e4789+0 Z(2)= 14903~3 Z(3)=-3e756-6

AXTAL WEIGHT=32e4 P(MAX) =300 P(MIN)= 20
A(OD)= 7e810-2 A(1)= 1e¢019-1 A(2)= 1e¢316-4 A(3)=~2e737~-7
BlO)= 16045=~1 Bll1)= l1e167-1 B(2)= 14040~4 B(3)=~-2.078-7
L(0)= 1462840 Z(1)= 2199+0 Z(2)==1.006-3 Z2(3)= 2el41-6

AXTAL WEIGHT=5569 P(MAX)=200 P(MIN)= S0
A(D)= 74810=-2 A(l1)= 9,053=2 A(2)= 24368-4 A(3)=-44894-7
B(C)= 1eM45=1 B(1)= 1e123-1 B(2)= 1¢260-4 B(3)=-2¢297-7
LIC)Y= 14628+0 Z(1)= 24176+0 2(21==44053~4 Z(3)= 74¢690-7




BRACHIAL 1V
AXTAL WwEl
A(O)=

B(C)Y=

L(O)=

AXTAL WEI
A(O)=
B(O)=
L (O =

AXTAL WEI
A(O)=
B(O)=

L(C)=

AXTAL WE!
A(Q)=
B(C)=
L(O)=

S

GHT =
7.810-2
160451
1462840

CGHT = 2
Te810=2
1e045-1
16628+0

GHT = 5
7e4810=-2
le045-1
1e628+0

GHT =10
7e810-2
l1e045~1
1e628+0

ILTAC EXTIRNAL

AXTAL wel
A(DO)=
BAO)=
L(O)=

AXTAL WE!
A(CO)=
B0y =
L(C)y=

AXTAL weT
A(O) =
B(O)y=
L(D)y=

AXTAL WE!
A(C)=
B(C)=

L(C)=

AXTAL WE!
A(C)H=
B(O)y=
LDy =

GHT =

762502
lell0=1
QeH00-1]

CHT = 2
7e250~2
lel110~1
Fe5H30~1

CHT = 5
7e000=2
DeB520=2
Ee 700=1

GHT =10
7e250=2
le110-1
Qe500~-1

GHT =

7e250-2
1el110-1
Qe500=~1
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TABLE II.- CONTINUED.

0 P(MAX)=251
All)= 96129=2
B{l1)= 14130=~-1
Z(1)= 1468140

0 P(MAX)=250
All)= 94150-2
B(l)l= 1e112=1
Z{1)= 14950+0

C P(MAX)=25]1
All)= Q4274-2
B(l)= 14096-1
Z(1)= 2¢090+0

0 PIMAX)=250
A(l)= Bel131-2
B(l)= 9,962-2
Z2(1)= 24173+0

0 P{(MAX)=306

A(l)= Be96C-2
Bll)= 1e204=~1
Z(1)= 1400340
0 PI(MAX)=302
A(l)= 9.686=-2
Bll)= 14219=1
Z(1)1= 14226+0
0 PIMAX)=260
All)= Bed4B~2
B(1)= 14002-1
Z(1)= 74899~-1
0 P(MAX)=294
A(l)= 94.468=2
E(l)= 1e165-1
Z(1)= 1438440

T P{MAX)=305%
All)=z 94793~2
Bll)=z 14184=-1
Z{1)= 1426040

P(MIN)= 52

A(2)= 14257~4
Bl2)= 6975~5
Z(2)= 14960-3

P(MIN)= 46

A(2)= 14580-4
B(2)= 1e«014-4
Z(2)= 1e744-6

P(MIN)= 60

Al2)= Be731-5
B(2)= 5840-5
Z(2)1==7885~4

P(MIN)= 64

A(2)= 2230-4
B(2)= 1.780-4
Z(2)1==2468-4

P(MIN)= 20

A(P)= 24306-4
BL2)= 1e475-4
<(2)= 24054-3

P(MIN)= 20

A(2)= 1e484-4
B{2)= 1.060-4
Z(2)= 14583~-4

P(MIN)= %2

A(2)= T7e279-5
B(2)= 7.8%2-5
Z(2)=—-2e¢632~4

PI(MIN)= 80

A(2)= 1e272-4
B(2)= 14177-4
7(2)1==2e501~-4

PI(MIN)Y= 20

A(2)= 1.698-4
B(2)= 1290-4
Z(2)= 1338-8

A(3)=-24196-7
B(3)=-6.,059~8
Z(3)=-3+670-6

A(3)=-44281-7
B(3)=-24582~7
Z{3)= 3e442~7

A(3)=-16364~-7
B(3)=-4e314-8
Z(3)= 2489-56

A(3)=~54184-7
B(3)=-3.884-~7
2(3)1=-9551=-8

A(3)1=-5,010-7
B(31=-3.096-7
Z(3)==44440~6

A(3)==-24718~-7
B(3)=~1e703-7
Z(3)=~1.025-~-8

A(3)=-8+751-8
B(3)==1390~7
Z(3)= 1+048-6

A(3)=-1e991-7
B(3)==-1e926-7
Z(3)= 464577

A(3)=-3.430-7
B(3)=-2584-7
Z2(3)= 0.000+0



HUMAN SPLENIC 1A
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TABLE II.- CONTINUED.

AXTAL WEIGHT = 0 P(MAX)=300 P(MIN)=z 20

A(O)= 7e000-2
B(0)= 94500-2
L(O)= 64700=-1

AXTAL WEIGHT = S50
A(D)= 7.000-2
B(0)= 9¢500=-2
L{O)Y= 64700-1

HUMAN SPLENIC | R
AXTAL WEIGHT = c
A(C)= 760N0=2
BID)= 9¢500-2
LIC)= Se540=-1
AXTAL WEIGHT = 20
A(O)Y= 74000-2
B(C)=z 94500-2
L(2)= S4540-1
THORACIC AORTA 1 A
AXTAL WEIGHT = 6]
A(D)= 130C-1
B(2)= 1e5%3~1
L{N)= 3e670~1

AXTAL WEIGHT = 50
A(O)= 1e300~1
BiD)= ]4553~1
L(O)= 3646701

THORACIC AORTA 1 B
AXIAL WEIGHT = 0

ACO)= 1300~

B(O)= 146001

1 (0)= S54500~1

THORACIC AORTA I1 A
AXTAL WEIGHT = 0
A(D)= 14320-1

B(O)= 1.820=~1

L(D)= 2.600+0

AXTAL WEIGHT = S0
A(C)= 16320~1
B(0)= 164820~1
L(C)= 246C0+0

Z(1)= 74899=-]

Z(1)= 44613-1

All)= Beb471=2 A(2)= 1e129-4
B(1)= 14053~-1 B(2)= 8.284~5
Z(1)= T7elal1=-1 2(2)= 646954

P(MAX)=260 P(MIN)= 52
A(l)= Be448=2 A(2)= T7e279-5
B(l)= 14002-1 B(2)= 7.892-5%

Z(2)==2¢632~4

P(MAX)=251 P(MIN)Y= 90
A(l)= Be221-2 A(2)= 14305-4
Bll)= 9¢741~-2 Bl(2)= 1637-4
Z(1)= 54929-1 £(2)= 44696-4

P(MAX)=350 PIMIN)= 54
All )= T7e324=-2 A(2)= 2301-4
B(l)= 9.078=2 B(2)= 2130~4
Z(1)= 64706~1 2(2)==9,137-5

P{MAX) =184 P{(MIN)= 40
Al(l1)= 1e064—1 A(2)= 1 +288-3
B(l1)= 1e¢361-1 B(2)= 1.069-3
Z(1)= 3e456-1 Z(2)= 1e244-3

PIMAX)=200 PI(MIN)= 40
A(l)= 14129-1 A(2)= 1.118-3
BlI)= 14405-1 B(2)= Be847-4

Z(2)=-3e705-4

P(MAX)=200 P(MIN)= 50
Al(l)= 1e187-1 A(2)= Be912~4
B(l)= 14485-1 B(2)= 74327-4
Z(1)= 5¢53£~1 Z(2)= 1e¢304-3

P(MAX)=260 P(IMIN)= 50
Al1)= 1e314-1 A(2)= 14132-3
B(l1)= 1e7672-1 B(2)= 9.129-4
Z(1)= 2e362+0 Z(2)= 1e4169-2

P(MAX)=300 PMIN)= 50
A(l)= 1el154-1 A(2)= 1345-3
Bll)= 1 503~1 B(2)= 141%0-3
Z{1)= 2e5124C Z(2)= lel42~-2

A(3)=-2e¢534=-7
B(3)=-1¢633~7
Z(3)=-1.685-6

A(3)=-Be.751-8
B(3)==14390-7
Z(3)= 1048=-6

A(3)=~2e842~7
B(3)=-4.,033-7
Z2(3)==9262-7

A(3)1=-44472~7
B(3)=~4.639-7
Z(3)= 2e161-7

A(3)=-34880-6
B(3)=-3.121-6
Z2{3)=-3990-6

A(31=-3.165-6
B(3)=-2:306-6
Z(3)= 34984-6

A(3)=-2.060-6
B(3)=~1e637-6
Z(3)=~3e813-6

A(3)=-2+178-6
B(3)=~1e¢775-6
Z(3)==-2311-5

A(3)=-24702-6
B(3)==2:270-6
Z2(3)=-2e262-5



HUMAN SPLENIC 1A

AXTAL WEIGHT = O
A(O)= 7400C=-2
B(O)= 9¢500-2
t.(0)= 64700~1

AXTAL WEIGHT = 50

A(C)= 74C0C=-2
B(D)= 95002
L Q)= 64700~1

HUMAN SPLENIC I B

AXTAL WEIGHT = O
A(Q)= 7e000C=-2
B(O)= 9¢500~2
L(0)= 54540-1

AXTAL WEIGHT = 20
A(D)= 74000-2
B(C)= 95002
L (0)= $54540-1

THORACIC AORTA 1 A

AXTAL WEIGHT = O
A(O)= 14300~-1
B(O)= 14553=1
L{0)= 34670-1

AXTAL WEIGHT = S0
A(O)= 1e4300-1
B(O)= 14553~1
LIC)= Be670-1

THORACIC AORTA I R

AXTAL WEIGHT = O
A(O)= 14300=1
B(0)= 1600~1
L{D)= 5¢500~1

THCORACIC AORTA 11 A

AXTAL WEIGHT = 0
A(O0)= 1e320-1
B(0)= 14820-1
L(D)= 24600+0

AXTAL WEIGHT = 50
A(0)= 1e32C=-1
B(C)= 1.820-1
L(O)= 266C0+0
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TABLE II.- CONTINUED.

P(MAX)=300 P(I(MIN)= 20

A(l)= Be471-2 Al(2)= 1el129-4
B(l)= 14053~ B(2)= Be284-5
Z(1)= T7el4l1~1 Z(2)1= 64695-4
P(MAX)=260 P(IMIN)= 52

A(l1)= Be448-2 A(2)= T7e279-5
B(1)= 14002-1 B(2)= 7.892~-5
Z(1)= 7899=1 Z(2)==2¢632-4

P(MAX)=251 P(MIN)= 90

A(l)= Be221=-2 A(2)= 1305~-4
B(l1)= 9e741-2 B(2)= 1637-4
Z(1)= 5492G6-1 Z(2)= 40696-4
RP(MAX)=350 P(MIN)= 54

A(l)= 7e324-2 A(2)= 24301-4
B(l)= 9.078~2 B(2)= 2.130-4
Z(1)= 647061 Z(2)==9+137-5

P{MAX)=184 P{MIN)= 40

AlCl)= 1 4064-1 A(2)= 1288-3
B(l1)= 1361=1 B(2)= 1+.069-3
Z(1)= 3e456=1 Z(2)= 1e244-3
P{MAX)=200 PIMINI= 40

Al(l)= 1e129-1 A(2)= 1e118-3
B(l1)= 14405~-1 B(2)= 8Be8B47~-4
Z(1)= 44.613-1 Z(2)==3.705-4

P{(MAX)=200 P(MIN)I= 50

AC1)= le187=1 A(2)= Bae912-4
B(1)= 1+485-1 B(2)= 7327-4

Z(1)= 5535-1 Z(2)= 1e¢304~3
P(MAX)=260 PMIN)= 50

A(l)= 1 e314~] A(2)= 14132-3
B(l)= 1e762-1 B(2)= 9¢129-¢

Z(1)= 236240 Z(2)= 1e4169=-2
P(MAX)=300 PI(MIN)= 50

A(l1)= 1el154-] A(2)= 14345-3

B(l1)= 14503=1 B(2)= 14150-3

Z(1)= 251240 Z(2)= lela2~-2

A(3)=-2e534-7
B(3)==1633~-7
Z(3)=-14685-6

A(3)=-8e751-8
B(3)=-14390-7
Z2(3)= 1e048-6

A(3)=-2e842=-7
B(3)=-4¢033~-7
Z2(3)==9¢262=-7

A(3)=—-4e472~7
B(3)=-4639-7
Z(3)= 2161-7

A(3)=-3.880~6
B(3)==3.121-6
Z2(3)1=~3¢990-6

A(3)=~3e165-6
B(3)=~24306-6
Z2(3)= 3.984-6

A(3)=-2.060-56
B(3)==1637-6
Z(3)=-3.813-6

A(3)=-2178~-6
B(3)=~1775-6
Z(3)==2311-5

A(3)=-24702-6
B(3)==2¢270-6
2(3)==2e262-5



THORACIC AORTA 11 B

AXTAL WEIGHT = O
A(O)= 1e4230~1
B(0)= 1e730~1
L(O)= 212040

AXTAL WEIGHT = T
A(C)= 142301
RB(0)Y= 1e4730-1
L(D)Y= 2412040

HUMAN SUP MESENTERIC

AXTAL WEIGHT = 0
A(0)= 9e600=2
B(0)= 14250-1
L(0)= S54500-1

AXTAL WEIGHT = 20
AlC)= 94600-2
B(C)= 14250-1
L(O)= 545C0-1

FEMORAL 1 A

AXTAL WEIGHT = O
A(O)= S5e440C-2
B(O)= 6.680-2
L(0)= 9.280-1
FEMORAL 11 A
AXTAL WEIGHT = 0
A(0)= 6e20C=-2
B(C)= 74500-2
L(O)= B8e4300-1
FEMORAL Il R
AXTAL WEIGHT = 0
A{O)= Se700~2
B(0)= 7.8C0-2
L(0)= 74200~1
AXTAL WE!GHT = 20
A(D)= S5,700-2
R(0)= 7.800-2
L(O)= 74200~1

TABLE II.- CONTINUED.

P{MAX)=250

A(t)=
B(l)=
2(1)=

P(MAX)=250

A(l1)=
B(l1)=
21 )=

P(MAX)=300

A(l)=
B(1)=
Z(1)=

P(MAX)=259

Af(l1)=
B(1)=
Z(1)=

P(MAX)=250

Atl)=
B(l)=
Z(le=

P(MAX) =301

A(1)=
B(1)=
Z(1)=

P(MAX)=200

Allo=
B(1)=
Z(1)=

P(MAX) =300

A(l)=
B(l1)=
Z(1)=

—47-

P(MIN)= 50

Fe565-2 A(2)= 1e722-3

1e418~1 B(2)= 16460-3

1 e826+0 £(2)= 1e156-2
P(MIN)= SO

F¢380~2 Al2)= 1e764-3

1e¢363-1 B(2)= 14541-3

2¢739+4C Z(2)= 2.026-3
P(MIN)= 60

1e094-~1 Al2)= 1e696-4

1 e355=-] B(2)= 1.284-4

Se949~] Z(2)= 14828=~4
P(MIN)= 21

lell19=-1 A(21= 1.283-4

1 e352-1 B(2)= 1.209-4

SeS544~1 Z(2)= Be548-4
P(MIN)= 23

5e4332-2 A(2)= 167164

6e657=-2 B(2)= 14232-4

8¢936-~1 Z2(2)= 1¢595-3
PI(MINT= 80

Be024~-2 A(2)= 74336-5

Qe774-2 B(2)=-1+031~5

66679-1 Z(2)= 14823-3
P{(MIN)= 50

Te2c7=2 A(2)= 1e836-4

Qe261=2 B(2)= 7.730-5

6e245=1 Z(2)= 24627-3
P(MIN)= 50

7e377=2 A(2)= 1e394-4

Be419-2 B(2)= 1e112-4

1602240 2(2)==1e206-4

A(3)=-3.965~6
B(3)=-3.382-6
Z(3)=-2¢504~5

A(3)==44227~6
B(3)==3.727-6
Z(3)= 14055-6

A(3)=-2e367-7
B(3)=~1.844-7
Z2(3)=-4,682-7

A(3)1=-3.408-7
B(3)=-2e907-~-7
Z(3)==2e247-6

A(3)=-4¢532-7
B(3)=-2.982-7
2(3)=-34226-6

A(3)=-1e130~-7
B(3)= 3+429-8
Z(3)=-14466-6

A(3)=-44.063-7
B(3)=~14620~7
Z(3)==3e4906-6

A(3)==2e779~7
B(3)=-2304~-7
Z(3)= 6.499-7



HUMAN FEMORAL

AXTAL WEIGHT

AXTAL WEIGHT

AXTAL WEIGHT
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TABLE II.- CONCLUDED.

P(MAX)=200 P(MIN)= SO
Al(l)= 1e171-1 A(2)= 5e014-5

B(l1)= 14471-1 B(2)= 1e271-4
Z(1)= 1407340 Z(2)= Be346~4
P(MAX)=20C P(MIN)= 50

A{1)= 1 .098-1 A(2)= 1e315~4
B(l)= 1.580-1 B(2)==2¢790~-5
Z(1)= 1613640 . Z(2)= 3.780-4
P(MAX)=200 P(MIN)= 49

A(l)= 1e4146~] A(2)= 2975-5
Bll)= 1e4561~1 B(2)= 54558~5

Z(1)= 14180+C Z(2)= 1e648-4
P(MAX)=200 P(MIN)= 50

A(1)= 14134~ A(2)= 1335-4
B(l)= 1+473-1 B(2)= 1e537~4
Z(1)= 1421540 Z2(2)= Be790-5

A(3)=-54045~8
B(3)==14708-7
Z(3)=~2e133-6

Al3)=-2e754~-7
B(3)= 24797=~7
2(3)=~5e4199-7

A(3)= 1el62-7
B(3)==14535-7
Z2(3)==2.814-7

A(3)=-3e4487-7
B(3)=-54205=7
Z2(3)==3e622-7



Curve-fit constants used to compute

B(1)=

P

B8¢0000000E+01
1 0D000000E+02
1¢2000000E+4+02
1¢3000000E+02
1¢5000000E+02

1¢9000000E+02,

2¢2000000E+02
2¢6300000E+02

Curve-fit constants used to compute

C(1)==3+5674805E+00

P

8+0000000E+01
10000000E+D2
142000000E+02
1¢3000000E+02
1«5000000E+N2
1+3000000E+4+02
2¢2000000E+02
2¢6300000E+02

Curve-fit constants used to compute

D(1)==15817267E+01

p

840000000E+01
1.0000000E+02
1¢2000000E+02
1¢3000000E+02
1+5000000E+02
1¢«9000000E+02
2¢2000000E+02
2¢6300000E+02

Example:

where

B
1

B
2

Il

Etc.

B(1)

B(2)
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TABLE III

COMPARISON OF THE COMPUTED AND CURVE-FIT
PARTIAL DERIVATIVES

9e4437712E+00

I

B(2)=-2.6532887E+01

I
1

3e1294099E+00
3¢1754404E+00
3e2166439E+4+00
3¢235384%E+00
32690527E+00
3¢3206904E+00
3e3452673E+00
3¢3587815E+00

C(2)=-92478551E+00

I
2

2¢8833054E+00
2¢9498764E+00
340079971E+400
3¢0337420E+00
3.0783371E+4+00
341387572E+00
31578850E+00
3e1451681E+00

D(2)=-4,0867958E+01
/

I
3

648739370E~01
69066190E-01
6¢8991550E~01
6¢8805440E~-N1
6¢8141750E-01
6¢5703640E~01
6¢2985990E~01
S5e7964090E~01

éw/éll(curve-fit) =

B

1

9.4437712E + 00

-2.6532887E + 0l =-2.6532887x10% =

aw/axl

B(3)= B8¢4045130E+401

aw/axl 8W/BIl(curve—fit)
6¢3733320E+00 6+7990263E+00
8¢2578011E+00 7e8944498E+00

1¢0216174E+C1
1¢1216134E+01
1e3243111E+01
1e¢7320726E+01
2¢0302322E+01
204281831E+01!

aw/aI2

9781263¢ (o] ¢]
1e40922716E+01
1e¢3418200E+01
1e8356278E+01
2¢1178830E+901
202860671E+01

C(3)==2e5272090E401

aW/BI2 dW/J3I_(curve-fit)
2
-2e3070669E+00 ~204415689E+00
~340630928E+00 ~2+8308879E+00
~348544077E+00 -3e7202412E+00
~442588998E+400 ~4e2778812E+00
~5e0773690E+00 -5e4816424E+00
~647095095E+00 ~7e5936264E+00
—7+B844960E+00 -843775986E+00
-9+4188080E+00 ~78502025E+00

aw/aI3

D(3)=~3e4145444E+01
6W/813(curve—fit)

-2e¢7645900E~-01
—~3e3537330E~-01
~3e2172560E~01
~2¢8819300E~-01
~1e¢7439000E~01
1¢6620400E~-01
40231800E~01
4¢4048900E~01

aw/aI3
-446821624E-01
~3.8458184E-01
~2e6874055E~01
~2e0345684E~01
~6e6079810E-02
1+49888270E-01
3¢5344204E-01
4e5161913E~01

2
+ 2B2(Il-3) + 333(11-3)

1]

9.4437712x10° = 9.4437712

-26.532887
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TABLE IV

W~FUNCTION CONSTANTS

Vessel Constants

BRACHIAL ra Bll)= 4¢263+0 B(2)==34126+0 B(3)= 3¢648+0 1(1)=
Cl1)==1e076+0 C(P)= 9¢508=1 C(3)==2e265~1 1(2)=
DE1)==1e106+40 D(P)= 44221+0 D(3)==1e190+1 1(3)=

BRACHT AL ITA Bll)= 1440+1 B(2)= 2.064+1 B(3)= 3e¢931+1 [(1)=
Cl1)==1e391+41 C(2)==1e026+1 C(2)=—-2e451+0 1(2)=
D(1)= 992940 DI(2)= 4¢882+0 D(3)=-2e270+0 1(3)=

BRACHIAL I11A B(l)= 944440 B(2)==24693+]1 B(3)= Be405+1 1(1)=
Cl1)==3e567+0 C(2)==94248+0 C(3)=~-2e527+1 1(2)=
DE1)==1eH82+1 D(2)==4e087+]1 D(3)==3e415+1 [(3)=

RRACHTAL IVA Bl1)==1e729+1 B(2)= 7¢398+0 B(3)= 2849+1 1(1)=
Cll1)= 3e502+1 C(2)==4es063+1 C(3)= B+.836+0 2)=
D(1)= 260040 D(2)= 16155+0 D(3)=-3e936+0 1(3)=

SRACHTI AL v Bll)= 126740 B(2)= 54173+1 B(3)=-1e563+1 I(1)=
Cl1)==6e886+0 C(2)==14861+1 C(3)= Be365+0 1(23)=
D(1)= Bed404+0 D(2)= 6e814=2 D(3)==-5¢025+1 1(3)=

EXTFEFRNAL Bll1)= 745940 B(2)==14¢551+1 B(3)= 2529+ I(1)=
I T1AC 1 Cl1)==2e579+0 C(2)= 2411040 C(3)==3e824+0 1(2)=
DC1)= 1e¢849+0 D(2)= 3¢03C+1 D(3)= 7e644~] [1(3)=

SPLENIC Bll1)= 2696640 B(2)==7¢1014+0 B(3)= 3¢687+]1 [(1)=
IA AND IR Cl1)= 3430+0 C(2)==1e090+1 C(3)= 1e796+0 (2=
D(1)==9e570=2 D(2)= 7¢822+0 D(3)= Be233~1 1(3)=

THORACIC Bll)= 1e792+1 B(2)=~14242+1 B(3)= 624140 1(1)=
AORTA T A C(1)==1e224+1 C(2)= BeB5S3+0 C(3)=-2¢394+0 1(2)=
D(1)1==2e623+0 D(2)= 5e4E85+0 D(3)= 1e282+1 [(3)=

Example: The W function for Brachial IA is given as

3 2

2
W = 31(11'3) + B2(11—3) + 33(11'3) + cl(I2 - 3) + c2(12-3)

3 2 3
+ 03(12-3) + Dl(Is—l) + D2(I3—l) + DS(IS—l)
where o
B(l) = B, = 4.263 + 0 = 4.263x10° = 4.263
c(l) =c = -1.076 + 0 = -1.076x10° = -1.076

Etc.

Gl

lel



THORACIC
AORTA |

THORACIC
AORTA 11

THORACIC
AORTA 11

SUPFRIOR

MESFNTFR

FEMORAL.

FFMORAL

FEMORAL

5]

A

B

Ic

11

A

A

8

B(1
ct1
D(1

B(1
c1
Ny

B(1
c1
D1

Bl
ca
DN

R(1
c1
D1

B(1
C(1
D1

Bl
cy
D(1

}J= 3091 +1
==20809+1
)= 1320+

)= 9471 +0
)==1e909+0
==8e051 =1}

)= 1844+
)==1e695+0
)==~1e733+4+0

})==6e279+0
}= 8447140
==7¢098+4+0

)= lel71+1
)==5e609+0
}= 3281+0

)= 3e812+1
1= 1e767+1
)==5e392+0

)T 2e564+1
}==4.083+0
)==1¢100+0
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TABLE IV.- CONCLUDED.

B(2)==2.837+1
C(2)= 14848+1
D(2)= 14348+2

B(2)==2¢932+0
C(2)= 14258~
D(2)= 1e452+0

B(2)==6¢572+0
C(2)r= 24819-1
D(2)= 24344+0

B(2)==1,538+1
Cl2)z==44262+0
D(2)= 14717+1

B(2)= 3.804+1
Cl2)==2e791+1
ND(2)= 14140+2

B(2)==1.018+2
C(2)==24176+1
D(2)= 24014+0

B(2)==4,927+1
C(2)= 7.837+0
D(2)==4,290+1

B(3)= 1e¢358+1
C(3)==%.872+0
D(3)= 3e643+2

B(3)= 1092+0
C(3)=~2e319-2
D(3)1=~6e617~1

B(3)= 14¢131+0
C(3)=~-2e117~2
D(3)==1e461+0

B(3)= 8¢382+1
C(3)=-8Be¢3123+0
D(3)= 2e240+0

B(3)= 44594+1
C(3)= 2.030+0
D(3)=~2e109+2

B(3)= 1e128+2
C(3)==7e¢347+0
D(3)= 2+757+1

B(3)= 34400+1
C(3)==5e520+0
D(3)==6e430+1

I(1)=
1(2)=
1(3)=

(1=
1(2)=
1(3)=

1(1)=
1(2)y=
1(3)=

(1=
12)=
1(3)=

It1)y=
1(2)=
1(3)=

I(1y=
1(2)=
1(3)=

440
4¢3
10

3¢5
369
1e4

35
3e7

leZ2

442
4e7
10

3e1
el
Oe8

3!
2e7
Oe5



~52-

‘paanseaw suawroads JO Jsqunu

2Y3 03} I9381 s3I9YORIJ UT SBINBTI

. . . (pes0OIaTOs Jeymawos)
(T)L1°1 = (T)ogz — —_— ueuny Aas31y Texowsg
o . . . . Axs3ay
(z)st°1 —— (T)€eST (T)vbe (T)zee ueungyy oTaejussay IoTaadng
- (z)sz 't —-——- (T)s9t" (T)vLy” (T)egz: Ueunyg Aae3ay otuatds
== (v)oz- 1 - (P)eot* —=- (v)ste” Ueung Kae3ay Teryoeag
- (1)oe*1 -— (T)¥8T " -— (TyLwe uewny X123ay ORTTI
(62)vs 1 -— (eT)ezet® -—- (T)e9z " -—- autued Axe3ay prioaed
(Lyts 't - (6)s0T" - (T)veT" - autued BlI0Y Teutwopqy
(zz)zi*t (z)so't (TT)STT" (Z)TT1T” (T)vee 0 (¢)esT" autued Aa231y TeIoweg
(z2)Lv 1 (z)ob't (ST)SOT "0 (2)660°0 - (z)1€2°0 |suTtue) '3IOY OTORIOYL
L °3=¥ eleqg L "JIoyu evleq ST *3°9¥ ejeq
o_»
/1 soTooadg T9ss3A

(yabus1 pastoxa/yzbus n3Ts-ut)
SOT3IRI UOTSU23X8 N3ITS-UJI

pa3ybromun pue °*HH um QT 3e qa/u
SSOUNOTYI TIem SATIRTIY

pejybromun pue "HH uw 0 e /U
SSOUNDTY3 [TeM SATIETay

YIVA ¥IHIO HIIM SINIAWIYNSYAW INZSTUd JO NOSIUYAWOD

A FT19YEL




~53—

TABLE VI

COMPUTER OUTPUT OF THE ELASTIC CONSTANTS FOR BRACHIAL III

L = O
A= Ao
MTI A

t D

2/

RBETALL 1)

RETA (P41
CETA (2]

ALFA(L 1)
ALFAL261)
ALTA (241

FARY =
MU P =

MR =

TETA(I 1)
BETA(P.
FHETA (341

ALFL (141
ALFA(Re1)
ODLFA(Rs1)

F(R)=
MUL2=
MU

Example:

PRESS

C1723471F=-02

BEONNJT D02
12 1e26817
49 7071E54+00

B8e 2006059 ~
==Be6H 724006 -
= Pell 743FOF-0C

URE =

7eBPROA14E 40
e @ 1T ISIL 1 s +{\'f

)==-BecIRTAGAE 0

Sedd67761E+01

160447912540
~1e1727370F 01

el

T7eR289R145+0]
}==6e 1 T7HU4CGE+D
)==QeZ11926%E+0C1

HedR2271F 40
1e0 765626 +00
1618156295 -01

Beta (1,1)

Alpha (1,1)

=B

03
3

]

Be2958723E-03
~8eFZ1CZ270E~-03
2el1647376E-03

11

Q
11

1706400 MM HG

B = 1¢0385%758E~01
B30= BeB0O00O0INE ~02
LAMBDA 2= 1410144

WCHE CK)=3e0361319E4+00

BETA(] 4« 2)==644852066E+01
FETA(P42)==8e2269395E 401
BETA(342)==9,9988770E+01

ALFA(142)==941624657E-03
ALFA(24¢2)z 245531076E-02
ALFA(3402)=2=244006596L =02

FeT)= 120473130402
MULI3==245870869E~-01
MUBZ2= 1473825486E+00

BETA(1+42)==6e1575440E+01
BETA(Z242)7=842269395E+01
BETA(3+2)=~1e0344256E4+02

ALFA(14¢2)==8e9310271E-03
ALFA(242)= 265521911E-02
ALFA(342)=2=2e4656566E~-02

EA(T)= 1e2094187E+02
MU13==2e6094151E-01
MUBP= 1e3458113E+400

= 7.8289814E + 01

0.0083006059 (psi) *

WETGHT =

78289814x10*

0400 GRAMS

L = 1¢1014488E+00
LO= 140000000E+4+00

LLAMBDA 3= Y496

BETA(1+3)=-9+.8850779F+01
BRETA(242)=-1.0689836E+02
BETA(343)==743748761F +01

ALFAC(]+3)7 2155005255 =-03
ALFA(2+3)=2~2e5H382880E~02
ALFA(343)= 1e8B3594840L~02

E(Z2)=
MUZ2 3=
MuU21=

3691679523 +01
Fe4028922E~C1
3e58879502E~01

BETA(1¢3)=2~9.2119365E4+01
BETA(243)==140344356C+072
BETA(3e¢3)=-743748761E40C1

ALFA(1+3)= 2e41647276k=-02
ALFA(243)1==244656266L~02
ALFA(343)= 1e8320967E~02

E(Z)=
Mu23=
MUZ2 1T =

3e9166672F+01
DeO6HBT71H63E~n1
3e4978960E~01

78.289814 psi

8.3006059E - 03 = 8.3006059%10  °



Adventitia
(mostly collagen)

External elastic lamella
(mostly elastin)

Media (mostly
smooth muscle)

Internal elastic lamella
(mostly elastin)

Endothelium

Figure 1.~ The five layers of the arterial wall.



Figure 2.- Microphotograph of Human Brachial II,
magnification 125X.
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EXTERNAL ELASTIC
LAMELLA

Figure 3.- Microphotograph of Canine Femoral I,
magnification 125X.
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Figure 4.- Microphotograph of Canine Thoracic Aorta I,
magnification 62X.
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Figure 6.- Mathematical model, coordinate system, and
stress components. :
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Figure 12.- Enlargement of X-ray negative for direct

measurement.
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inches

wWall thickness, H,

inches

Wall thickness, h,

0.04

Internal pressure, mm Hg.

(b) Heavy axial loading.

O Brachial IA
00 Brachial IIA
{ Brachial IIIA
/A Brachial IVB -
{ Femoral IIB
! [ Thoracic IB
1\\T3; O Thoracic IIA
© .o
i) — d
A ‘.\o- B O P—
100 200 300 400
Internal pressure, mm Hg.
(a) No axial loading.
T T
0O Brachial IIA - 100 grams
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Figure 15.- Variation of wall thickness with internal pressure for several arteries.
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Figure 23.- Concluded.
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Figure 24.- variation of Young's
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with internal pressure for
Iliac I.




‘pepniouoc) -y

"yzbusT jue3lsSUOD 03 payolzealg (o)

*by uu ‘oanssead Teuxsjur

2anbTtg

00¢€ 002 00T 0
8°0-
¥ro-

g

za, o
0

0

o]

—. ——f =}
R [°

o

)

rt

o N ‘.

o

vo ~

0 =

CEM &
u/mH/ oo
z°1

00T

RN

ooz

WFI\llkfllll _ Al 00¢€

oov

.mw&\n @W |
T 00s

00°

"d €A3TOTISEId JO SNTNPOW

T

1sd

*3ybrem TeTxe weib 0z (q)

‘B ww

00¢

‘panssoad Teulajur

00T

80—
v-o-
el
o)
.
6]
()]
o]
0 3
/]
K
]
o+
H
¥'0 O
=
o
.
8°0
0
ov
=
19)
Qu
c
—
]
08 w
o]
Hh
o
o
o1
&
-
0
.
o+
s
09T
=
3
ke
n
-
002 .
ove




‘yI OoTuoTds JI03 dansssaiad TeuIa3ut
U3TM SOT3RI S,UOSSTOJ pPue TINPORW S,bunox Jo UOT3IRTIIRA -°GZ 2InbT4g

*3ybtem Teixe wexab 05 (q) ‘3ybtrom TeTxe oiaz (e)

by um ‘oanssoad jeuxajur *HH uwu ‘sanssaxd [euxsjul

00¢ 00¢ 00T 0 oot ooz 001
8 0-
v o-
g
o]
Q.
n
0 5
=]
-
al
o)
vo o
o]
-
m -o .
21
0
=z
2
or g .
X .
! &
o Fo
08 o
NM DJ. A[ mm
n
o -
=
p 0
jog 0zt K
< :
mm tH
09T T
b

00T

00¢

oog

ooV

00s

‘oT3RI S,U0SSTOd

(1,

?sd‘Ta ‘A3ToT3ISEBT9 JO SnTNpPon




"dI DOTuelds Jo3z sanssaad TeUASJIUT
Y3ITM SOTIBI S,UOSSTOJ pue TINPOW S,HUNOX JO UOTIETIBA - °97 2InbTg

‘3ybteom fetxe weib 0z (q) *3ybtom TeTxXe o013z (e)
*hyg uu ‘@anssoad Teursjul *HhH uwu ‘sanssaxd Teuasajul
00¢€ 002 00T 0 00¢ 002 00T 0
m-O| w O|
v O' .V O'
g g
3 — ]
w
0 9 ) 0 8
| \v‘ : | | :
i - I z3I, N
s 2 B
< v'o m ,\ v°0 m
¢ . : - Afl%;vlnmu//ﬁ K
o2n { : e 9z, 20} vy
. . . o
8'0 = 8°0
T Z°1
’/LV/A O O
B L 5
g Tq
>
=
. 3
. ”OW - S
o, =
&. 5 \ \ &
=
. g 00T & u\ha 00T o
. z th
z A m!V\L e
a9 T o O W
0 / 3 A &
. w m
o 3
o+
\\\\\ m :
o -
< ]
L
tr
H : g
I ooz ; ooz 2
o Yq
B
®|\Q
o, /]
m ~
[s10)4




.

0 100 200
Internal pressure, mm Hg,

(a) Zero axial weight.

-

200 ? 500
B!
9]
o,
. ot
@ o
- 400
> N
=~ ; -
D E >
@ 6 5 300
—- 9]
. 100 7
o . i
Q
@ qTCP\ . 200
-~
=] E [e]
B - z0 a
= E
- I 3 100
: ]
5 Fr
0 0
1.2 1.2
I'JLI'Z
0.8 7 0.8
- g /
ﬁ" “rz R
o .
g e p
.~ 0.4 —-—-———ﬂ— o 0.4
+J H
g i - o
N “
- z6 d 0 Q
i AR S
0 Y y u 0
17} Cj éh}g 8
0]
- [<Y]
&
-0.4 ~0.4
-0.8 -0.8

Internal pressure,

100

200

Figure 27.~ Variation of Young's
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with internal pressure for
Thoracic Aorta IA.

Figure 28.-~ Variation of Young's
Moduli and Poisson's ratios
with internal pressure for
Thoracic Aorta IB, zero axial
weight.
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Figure 31.- Variation of Young's Moduli
and Poisson's ratios with internal
pressure for Superior Mesenteric IA,
zero axial weight.
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Figure 36.- Condition for transverse isotropy for three different
Brachial arteries.
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Figure 37.- Variation of the elastic moduli of elasticity for four different
Brachial arteries stretched to their in-situ length, showing the effect of
age.
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APPENDIX A

DETERMINATION OF THE P CONSTANTS

The form of the Bij was given in Equation (27) as

Biy = 7 g—z—j—l (13 = 1,2,3)

(A-1)

which is convenient for machine computation. The various partial deriva-

tives, obtained directly from Equation (13) are given by

_ 2 9 2,. 2 2,0 2 2 oP
E N 5%: + 2, 50,% + 2% 5t 22, (A% + 2 5w+ S
do

11 2 d 2 2 2, O 2 oP
S T M ot (%2 t A, ) ao T AN YA .
2 2 2 2
agll _ 5 2 s + 202 + 22 ) + 2% 22 + oP
SKS - M Ag 1 WAy 3 Aa 1 Mg ¥ 5)3
5022 - d F A E(0 2 423 ) N S oP
5%1 AP~ A, Y 3 A 1 4 A
acj2‘2—27\ + 229 202 4 A ooy (A Z 4 A2y 4 B
Sh. T M0 n T B NI 2 4 3
a022 =5 2 o) 2 2 2, 9O 2 2 oP
3 = M ot A, (7\l + A, ) 5+ AgAy T Y+ 5
3 3 3 3
\__6033_}\28 +ZO02 + a2 Lo + OF
oA T s xl 3 1 2 A g ¥ o
9054 2 J¢ 2 2y U L ooy 5 2 v+ op
5%2 = P 6}2 + N (xl + A, ) Aa 2"s 6%2

il

33 2 9 2, 2 2, 9 2 2 oP
S T A g%;+2x3¢+x3 (A, +x2)3%+2x3(x1 + Ny +'éx_3

where ¢, ¥, and P are given by Equation (14). The derivatives of
functions are then given as

r (A-2)

these



J¢ _ 2 oW _ 0 5I3
axi ff; axlaxi 21, Bxi
oI
oY 2 W Y 3
= - 5 \ (A-3)
axi -rf; ‘axzaxi 2T, ory
oI
op O°w p 3
=21 +
Sxi 3 alséxi 2T, axi

The second-order partial derivatives, 82W/6Ii6kj, are determined by differ-

entiation of SW/BIi (Egq. (19)) with respect to the extention ratio xj,
that is,

o%w oLy
ST,on, - Xy on, \Gd = 1’2’§> (A-4)
i 3
where
K, =2 [B, + 38, (I, - 3]
K, =2 e, + 3¢, (1, - 3)] (A-5)
K, =2[D, + 3D, (1, - 1]

The remaining derivatives SIi/axj are determined by differentiating the
strain invariants with respect to the extention ratios .. Hence, the

Bij are finally obtained by substitution of Equations (A-2), (A-3), (A-4),
and (A-5) into Equation (A-1).



APPENDIX B
DISPLACEMENT SOLUTION OF A THICK-WALLED TUBE

B.1 DEVELOPMENT OF THE STRAIN EQUATIONS

The analysis presented in Section 3 was a nonlinear membrane analysis
in which the variation of stresses across the tube wall was neglected. By
virtue of this approximation, it was possible to extract all of the elastic
coefficients Bij from experimental measurements of the internal pressure,
axial load, and resulting deformations. As a check on that analysis, we
shall present here the analysis of a thick-walled, homogeneousa, anistropic
tube subjected to internal pressure and axial tension. Since the vari-
ation of stress through the tube wall cannot be measured directly, it is
not possible to use this analysis to extract the elastic constants from
the experimental data. However, the thick-walled analysis can be used as
a check on the membrane analysis by using the Bij computed from the latter
in the stress-strain relations obtained from the thick-walled analysis.
These stresses and strains can then be checked against the experimental
data. |

The equilibrium equations for an axisymmetric body (see Fig. 6) are

given, in cylindrical coordinates (Ref. 35), as

do ot 6. - @O
6
Bfr + azrz + = - =0 (B-1)
and
awrz aoz Ty

We now assume that the shear stresses Trz and the shear strains are
zero and that the normal stresses are functions only of the radial coordi-
nate r. Equation (B-2) is then automatically satisfied and Equation (B-1)

becomes

do g. - 0C
= "o -0 ' (B-3)

8It should be noted that, in a thick-wall analysis, the assumption of homo-
geneity may actually be less realistic than in the membrane analysis, in
view of the nonhomogeneous material wall. However, the thick-wall analysis
does permit a radial variation of stresses and strains which the membrane
analysis does not allow.



The strains are given in terms of displacements (Ref. 35) by

du

€r T ar’ €9 °

Ko

. - W -
E} € _— (B 4)

and €, Wwas observed experimentally to be constant through the wall.
Since the normal stresses and strains are assumed to be a function only of
the radial coordinate r, the material. automatically satisfies the compati-
bility equations, (see Ref. 35).

The stress-strain equations for a linear, cylindrically anisotropic
material can be expressed in terms of the elastic constants B's by

= N
99 Bllee + Blzez + Blser
Oz = B1266 + B22€z + ster (B-5)
O = Blsee + stez + Beser J

This equation is based upon the assumption that the components of
strain are linear functions of the stresses and pass through the origin.
However, if the stress-strain relationship is nonlinear, then Equation (B-5)
is meaningless, so, rather than discuss absolute stresses, we must discuss
the local rates of change (perturbations) of the stresses and strains o
and ¢, and thereby determine the differential strains. In order to do
this, we assume that the elastic constants Bij are defined as the local

values and are not strong functions of the pressure; that is, we assume that

o9B,

Ssii =0 (B-6)

This assumption permits us to write the stress-strain equation in the form

509 aee de I Jde 3
. + B z + B by
op P11 3p 12 Op 13 Op
Py Py P, P,
S~ Ao Qe )
uuz _ ute vcz V€r _
| "R | TP | tRas (B-7)
Py Py P, Py
do o de de
r - B 6 + B z + B r
op 13 Op 23 Op 33 Op
P, P, P, p,

where the derivatives are evaluated at some pressure p ,
1



Equation (B-7) is more simply written as

| -

1 1 1
% = Bllee + B12€z + B:Lser
(- 1 1 1 _
o,' = B, " + Boo€y' + Bos€y > (B-8)
| J— t 1 1
Op = Blsee + stez + Bsser
‘ J

where es' = 866/5p, ez' = bez/bp, and er' = 8er/5p.
The differentiation of equilibrium Equation (B-3) with respect to
pressure yields
! |
dor 0. Og

ar + - =0 (B-9)

Now, by substituting the strain-displacement Equations (B-4) and the
stress-strain Equations (B-5) into the equilibrium Equation (B-9), we
obtain the following second-order, ordinary differential equation for the
radial displacement u' as a function of r:

1 ! 1
du a2 Line,' =0 (B-10)
dr r
where
2
K* =B,,/8,, and A= (8, -8 /8 (B-11)
The solution of Equation (B-10) has the form
u' =P r*+ Fr* 4 pr (B-12)

where the constants Fl and F2 must be determined from the boundary con-
ditions, and F is defined by

F = -Ac,'/(1 - k%) (B-13)

The two boundary conditions which are used to evaluate F  and F2
are the values of radial stress (equal to minus the pressure) at the inner
and outer wall. Thus, in terms of the local derivatives, we have

or' =0 at r =Db, and or' = -1 at r = a (B-14)



By substituting the solution of the differential equation (Eq. (B-12))
into the stress-strain equation (Eq. (B-8)), and employing these boundary
conditions, we find that F  and F2 are given by

yk+l£l + Bez'(l _ Yk—lﬂ |
- B
(1 - v3% "z
F, = — (B-15)
b (513 + k 633)
and
(-1) aXt? [1 + Be,' (1 - yk_l)J
F, " (B-16)
(1-v @, -xe,)
where
Y = a/b
B=8_-—2 _ (g 18 ) (B-17)
23 l - k2 33 13

Hence, the stresses and strains can finally be written in terms of the
radial coordinate by substituting Equations (B-15), (B-16), (B-4), (B-13),
and (B-12) into Equation (B-8). Thus, we have

ez’ = constant
ee' = Flrk Y4 Fr k-1 _ z
1 - k%
- ke Ae, !
er' = F krk . szr k-1 _ >
l -k
F r (B-18)
r k—l 2 1
Op =F,r (613 + k 533) + rk+1 (Bls -k B,) + Be,
k-1 FZ
r - - 1
9 F,r (811 + k 613) + rk+1 (Bll k 813) + He,
F
k-1 2
1 _ _ 1
% F.r (812 + k 623) + RES (612 k B23) + Ge,

where the constants H and G are given by



(B-19)

Equations (B-18) will be used to check the validity of the elastic
constants Bij generated by the nonlinear membrane theory of Section 3.
This check is completed by comparing the computed values of ee' at the

inner and outer radii (a and b) with the values calculated directly from

the experimental data. The experimental strains, €g ' and €g ' are
given locally by a b
r - 1 oa
€o a 55
a
(B-20)
€eb b Op

These expressions are easily evaluated from the a and b curve-fit Equa-
tions (36), so that they become

N
. a, + 2a3p
6, + + 2
a a, a_p a_p
(B-21)
. b2 + 2b3p
6y b tbop+bp
1 =P sP A
Figure 38 presents the values of €g ' and €g ' computed from the
a b

thick-tube analysis (Egs. (B-18)) for two different arteries, each of
which was exposed to two different axial weights. The experimentally

determined values of ' and €g ' are also shown.

€6
a b

Since experimental uncertainties (Ref. 41) in calculating the experi-
mental €g's are fairly high (20 to 30 percent), it is difficult to say a
great deal concerning the results except that the experimental data are in
approximate agreement with the theoretical values. 1In view of the highly
nonlinear equations involved in computing these theoretical strains, and
in view of the nonhomogeneous arterial wall, the agreement is considered
sufficiently close to conclude that this approach adequately checks the
B's computed from the membrane analysis. It also appears that the thick
tube effects do not warrant additional consideration at this time, since

the theory roughly predicts the strains at both the inner and outer walls.



B.2 INCOMPRESSIBILITY

The condition of incompressibility is given by setting Equation (39) to
zero and written here in terms of er', ee', and ez' as

er’ + ee' + ez' =0 (B-22)

By substituting the strain Equations (B-18) into the above, we observe that

1l
o

-1
Flrk_l(l + k) + F_(1 - x)r k2 -e,! [ZA(l - x% - J (B-23)
If the test material is truly a homogeneous, incompressible material,
then Equation (B-23) must hold for any value of the radial coordinate r,
However, the only conditions which will satisfy Equation (B-23) for all

values of r are either

i

l and A =0 (B-24)
or

>

12 - Bss and B13 =B

23

but these are the conditions for isotropy and/or transverse isotropy in the
r6é plane, respectively. Hence, only isotropic or transversely isotropic
(r6 plane) material can be incompressible; all other homogenecus, trans-
versely isotropic (rz - and 6z planes) and anisotropic materials must be
compressible,

Under certain loading conditions, arteries behave as transversely
isotropic materials in the 6z plane, but this is not the condition for
incompressibility discussed above. Consequently, arteries are compressible
except for extremely small loading (below the physiological range) where
they behave isotropically.



APPENDIX C

COMMENTS ON Bij AND W

C.1l CHECKS ON THE COMPUTED Bij and W

It is often very helpful to be able to have an instant check of the
computed W's (strain energy) and Bij's (elastic constants) to eliminate
unnecessary computing if errors are present. Two such checks exist, one
for the PB's and one for W's.

The PB's can be quickly checked by observing whether reciprocity9

exists, that is, B = Bji‘ Since all nine PB's are calculated individu-

ally (see Table VI ;gr sample output), this comparison is a convenient and
quick check. In the present work, if the B's did not check within 10 per-
cent, the data were not considered admissible, and the W function was
re-evaluated.

It should be noted that reciprocity also exists for the a'ls, as well
as the B's.

The magnitude of the stored strain energy W for the unweighted
specimens can be evaluated by considering the work done by the air in dis-
tending the specimen. The isothermal work Wa done on the gas inside the
artery can be expressed as

W, = - p. 4dv (c-1)

where the internal pressure pP; can be related to the internal volume Vi
by the equation of state, that is

p.V. = R_T, (c-2)

In this case, the pressure is absolute pressure and not gage pressure. By
substituting (C-2) into (C-1) and integrating, we find that Wa is given
by

°The proof of reciprocity can be found in most elasticity texts (see Refs.
31, 33, or 34).



Py
Wa = -RoTi 1n E (C-3)
or
p.
—1
Wa = -ini 1n P,

If Wa is the work done on the gas, then the stored strain energy is equal

to -W, the work done by the gas on the walls. However, since W is

given as the strain energy per unit volume, we must divide —Wa by the
volume of the arterial wall V, which finally yields W. The value of the

W then should be given as

-W pl a2 P
W = = In — (Cc-4)

(b% - a%) Py

where P is the internal pressure corresponding to the radii a and b,
and P, is atmospheric pressure (14.7 psia).

This check of W is also presented in Table VI (noted as W (check))
for comparison with the value obtained from the W function curve fit.
Equation (C-4) offers only an approximate check because the errors involved
in measuring the pressures are too great to allow an accurate computation
of the logarithm. Therefore, if the value of W computed from (C-4) agreed
within an order of magnitude with the value computed from Equations (18),
the data were considered acceptable.

C.2 FINALIZED ELASTIC CONSTANTS

All of the finalized elastic constants presented herein were obtained
by averaging the Bij where reciprocity should exist; that is, since Blz
should equal 821, an average value was used in their place. The net result
of this averaging is shown in Table VI. 1In general, the finalized moduli
and Poisson'!s ratio only changed by 1 to 2 percent from their values before
averaging.




